Fu Delft I

Tezting Byzantine Fault Tolerant Algorthims

Evaluating the cormectness of Tendermint protocol using BezzFuzz

1. Background

Consensus protocols run the world. They
are the backbone for services like online
banking, e-commerce etc.

Testing is hard, but is necessary for
ensuring that systems are safe
Tendermint[1] is a very widely used
protocol

Tendermint has the theoretical guarantees,
however implementations are still
susceptible to bugs

ByzzFuzz[2], a fuzzing-based testing
approach, was used to evaluate the
robustness of Tendermint. It injects
structured faults in the schedules to
simulate real-world conditions

PROPOSAL PREVOTE PRECOMMIT

Figure 1: An overview of the Tendermint consensus protocol

e Can ByzzFuzz find any bugs in the
implementation of Tendermint?

How does the bug detection performance
of ByzzFuzz compare to a baseline
testing method that arbitrarily injects
faults?

How do small-scope and any-scope
message mutations of ByzzFuzz
compare?

Author: Antoni Nowakowski - a.f nowakowski@tudelft student nl

Implement Tendermint protocol in
ByzzBench framework

Create structure aware mutations,
namely small-scope and any-scope,
which mutate values incrementally and
arbitrarily respectively

Test the protocol using the baseline
testing approach

Test the protocol using ByzzFuzz, while
trying out different numbers of process
and network faults

Message Mutation

PROPOSAL(id. h, r,vr,v) PROPOSAL(id. h’. r, vr.v)
PROPOSAL(id, h,r’, vr.v)
PREVOTE(id, h’, r, v)
PREVOTE(id, h, r’, v)
PRECOMMIT(id, h', r. v)
PRECOMMIT(id, h,r’. v)

PREVOTE(id, h, r, v)

PRECOMMIT(id. h. r,v)

Table 1: Structure aware mutations

» Test the implementation against known
potential violation[2]

”m

PROPOSAL PREVOTE PRECOMMIT

Figure 2: The known violation, as reported by Winter et (2]

[1] E. Buchman, J. Kwon, and Z. Milosevic, “The latest
gossip on BFT consensus,” CoRR, vol.
abs/1807.04938, 2018.

[2] L. N. Winter, F. Buse, D. de Graaf, K. von
Gleissenthall, and B. Kulahcioglu Ozkan, Randomized
testing of byzantine fault tolerant algorithms,” Proc.
ACM Program. Lang., vol. 7, Apr. 2023.

Faults | Liveness

Agreement Total

M ‘ Liveness Agreement Total

baseline ‘ 0 0 2

000

| ss

| S AS SS AS

2
0 2

000
000

0 0 0 0 2000
1000 0 0 0 2000
2000 0 0 2000

1 0 2
0 2
0 2

000
000
000

0 2 2 0 0 2000
1000 T 2 0 0 2000
2000 8 10 0 0 2000

1
1
4 0 2
8 0 0 2
4 0 2

ja-Ra-Ra-lla-Ra-Ra-1ia-Ra-}
([i T o T
[i T T

PO = O = O =

1O 10 O =
2122|2222 2

000
000
2000

0 31 34 0 0 2000
1000 35 37 0 0 2000
2000 34 30 0 0 2000

Table 2: Fauls found by ByzzFuizz on the implementation fulfling
both synchronous message delivery and gossip protacal assumptions

Faults Liveness Agreement
SS AS SS AS

Total

Table 3: Faults found by the bassline testing approach

0 0 0 0
441 441 0 0
669 701 0 0

o oo Ji{e]

2000
2000
2000

Faults Liveness Agreement Total
SS AS SS AS

1 0 0 0
397 420 0 0
657 666 0 0

2000
2000
2000

92 83 0 2000
81 98 0 2000
93 87 0 2000

=g

=R
L T L T |

5 0 0 0
381 421 0 0
644 685 0 0

22 2|2 22222Z

W= OO~ O

L3 O S S [y

2000
2000
2000

90 79 0 2000
90 67 0 2000
13 100 0 2000

F

Supervizors: Jodo Meto, Dr. Burcu Kulahcioglu Dzkan

Table
messages and using unreliable gossip protacal

Conclusion

ByzzFuzz successfully
identified two bugs in the

Fauils found by ByzzFuzz on the implementation fulfling synchronous delivery of

B

implementation of Tendermint

ByzzFuzz performs better
than the baseline approach
Small-scope mutations
perform better than any-
scope mutations

This implementation was
resilient to the known
potential violation
Additionally an extension of
the known vulnerability was
found

65 90 0 2000
66 il 0 2000
83 78 0 2000

la~Ra-Na~1 ha-Na-Ra-] la-Ha-Na-]
(L T R A T
MhRREseee
2722|2222 27
L [
(SRR [CESY)

Table 5: Fauls found by ByzzFuzz on the implementation with asynchronous delivery of
messages and using refiable gossip protacol

B

Baseline should be configured to
not violate Tendermint
assumptions

More mutations could be
introduced

An implementation making use of
power voting could be introduced
and tested to attempt to find
more violations that stem from a
Proof-of-Stake design

Twins could be used to compare
performance of ByzzFuzz to
another BFT focused testing
approach

Lirmitations

Affiliations: EEMCS Faculty Delft University of Technology

mailto:a.f.nowakowski@tudelft.student.nl

