
Testing Byzantine Fault Tolerant Algorithms 
Evaluating the correctness of Tendermint protocol using ByzzFuzz

Author: Antoni Nowakowski – a.f.nowakowski@tudelft.student.nl Supervisors: João Neto, Dr. Burcu Kulahcioglu Ozkan Affiliations: EEMCS Faculty Delft University of TechnologyDelft

 Consensus protocols run the world. They
are the backbone for services like online
banking, e-commerce etc

 Testing is hard, but is necessary for
ensuring that systems are saf

 Tendermint[1] is a very widely used
protoco

 Tendermint has the theoretical guarantees,
however implementations are still
susceptible to bug

 ByzzFuzz[2], a fuzzing-based testing
approach, was used to evaluate the
robustness of Tendermint. It injects
structured faults in the schedules to
simulate real-world conditions

 Background

Figure 1: An overview of the Tendermint consensus protocol

 Research Questions
 Can ByzzFuzz find any bugs in the

implementation of Tendermint

 How does the bug detection performance
of ByzzFuzz compare to a baseline
testing method that arbitrarily injects
faults

 How do small-scope and any-scope
message mutations of ByzzFuzz
compare?

Figure 2: The known violation, as reported by Winter et al.[2]

Table 1: Structure aware mutations

 Implement Tendermint protocol in
ByzzBench framewor

 Create structure aware mutations,
namely small-scope and any-scope,
which mutate values incrementally and
arbitrarily respectivel

 Test the protocol using the baseline
testing approac

 Test the protocol using ByzzFuzz, while
trying out different numbers of process
and network faults

 Methodology

 Test the implementation against known
potential violation[2]

References
[1] E. Buchman, J. Kwon, and Z. Milosevic, “The latest
gossip on BFT consensus,” CoRR, vol.
abs/1807.04938, 2018.

[2] L. N. Winter, F. Buse, D. de Graaf, K. von
Gleissenthall, and B. Kulahcioglu Ozkan, Randomized
testing of byzantine fault tolerant algorithms,” Proc.
ACM Program. Lang., vol. 7, Apr. 2023.

 Conclusion

 ByzzFuzz successfully
identified two bugs in the
implementation of Tendermin

 ByzzFuzz performs better
than the baseline approac

 Small-scope mutations
perform better than any-
scope mutation

 This implementation was
resilient to the known
potential violatio

 Additionally an extension of
the known vulnerability was
found

Table 5: Faults found by ByzzFuzz on the implementation with asynchronous delivery of
messages and using reliable gossip protocol

 Results

Table 3: Faults found by the baseline testing approach
Table 2: Faults found by ByzzFuzz on the implementation fulfilling

both synchronous message delivery and gossip protocol assumptions

Table 4: Faults found by ByzzFuzz on the implementation fulfilling synchronous delivery of
messages and using unreliable gossip protocol

 Baseline should be configured to
not violate Tendermint
assumption

 More mutations could be
introduce

 An implementation making use of
power voting could be introduced
and tested to attempt to find
more violations that stem from a
Proof-of-Stake desig

 Twins could be used to compare
performance of ByzzFuzz to
another BFT focused testing
approach

 Limitations

mailto:a.f.nowakowski@tudelft.student.nl

