Using Weighted Voting to Optimise
Streamlined Blockchain Consensus Algorithms

I 1. Introduction

Consensus - collective agreement of network participants to ensure
proper functionality of distributed systems.

Weighted voting - in the consensus mechanism, the voting power of a
node depends on a weight metric.

Byzantine Fault Tolerant (BFT) protocol - requires 3f + 1 nodes in a
distributed system to withstand f node failures.

Streamlined consensus algorithms - new leader in each protocol view.

I 2. Background

Hotstufft [1]:
- Streamlined algorithm comprising 5 communication phases.

- 0(n) communication complexity.
- Basic Hotstufl - nodes vote on a single block per view.

- Chained Hotstuff - enable a pipelined voting mechanism to
simultaneously progress on several blocks per view.
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Figure 1: Hotstuff communication phases.

AWARE (Adaptive Wide-Area REplication) [2]:

- Uses A additional replicas and develops a deterministic, self-

monitoring and self-optimising algorithm for improving the latency
of the blockchain.

- Combines BFT-SMaRt (enhanced PBFT) [3] as replication protocol
and WHEAT [4] for the underlying weighting distribution scheme

(Vmax =1 + % or Vmin = 1 voting power of each replica).

-+ Self-monitoring - uses a deterministic latency prediction.

- Self-optimisation - employs voting weights tuning and leader
relocation mechanisms.

I 3. Scientific Gap

The impact of weighted voting has been applied so far only on PBFT
in AWARE [2].

This research aims to address the benefits of weighted voting on
streamlined algorithms in terms of latency reduction by studying the
representative Hotstuff [1].

This research also highlights the effectiveness of using a generalised
continuous weighting scheme (rather than the discrete one) for
optimising the recovery performance of the system.

I 5. Results
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(b) Chained Hotstuff
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Figure 2: Average latency per view of protocol variants with f = 1 and A = 1 (top Figs., non-faulty scenario — all nodes behave normally,
and bottom Figs., faulty one — f nodes holding highest weights are considered idle).

I 4. Methodology

1. Latency prediction models:
- Two models - for the Basic Hotstuff and Chained Hotstuff, respectively.

- Developed based on the deterministic latency prediction method used in AWARE for self-monitoring.
- Emulate the streamlined algorithm behaviour combined with weighted voting.

- Estimate the latency of a protocol run given the set of weights, network scenario and number of views .

2. Simulated Annealing:
We use this metaheuristic method to evaluate the impact of the following possible optimisations on the
Weighted blockchain protocols:

I. Best Assigned - assign the highest Vmax weight to the best performing 2f replicas.
II. Optimal Leader Rotation - find the best succession of leaders to minimise the overall latency.
II1. Optimal Leader Rotation + Best Assigned - combine the two optimisation methods described in I and II.

IV. Continuous (applied only to Hotstuff) - find a continuous weighting scheme that achieves lowest latency
in both faulty and non-faulty scenarios.

Note that the continuous weighting scheme is not limited to the streamlined algorithms but can be applied to any
blockchain consensus one.
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Figure 3: Difference in latency performance between Best Assigned and
Continuous Weighted Hotstuff variants for 1000 faulty scenario
simulations, f = 1,A = 1, 10 views executed.

I 6. Limitations

« The latency prediction models use same weights and
network setting in all views of a protocol run.

« Simulated Annealing algorithms are impractical for n >
15.

« Continuous Weighted Hotstutf is infeasible for f >4 due
to the high computational complexity of the required
quorum safety checks.

I 7. Conclusion

« Only applying weighted voting to Hotstuff and Chained
Hotstuft decreases latency by 77%.

« Optimal Leader Rotation + Best Assigned optimisation
reduces latency by almost 25%.

« Continuous Weighted Hotstuft performs equally well or
better than Best Assigned one in 85% of simulations.

This research represents a founding base for the study of
weighted voting in streamlined algorithms and its shift
from the discrete model.
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