Using Weighted Voting to Optimise
Streamlined Blockchain Consensus Algorithms

I 1. Introduction

Consensus - collective agreement of network participants to ensure
proper functionality of distributed systems.

Weighted voting - in the consensus mechanism, the voting power of a
node depends on a weight metric.

Byzantine Fault Tolerant (BFT) protocol - requires 3f + 1 nodes in a
distributed system to withstand f node failures.

Streamlined consensus algorithms - new leader in each protocol view.

I 2. Background

Hotstufft [1]:
- Streamlined algorithm comprising 5 communication phases.

- 0(n) communication complexity.
- Basic Hotstufl - nodes vote on a single block per view.

- Chained Hotstuff - enable a pipelined voting mechanism to
simultaneously progress on several blocks per view.

New-view , Prepare Pre-commit Commit Decide

RO

Rn

Figure 1: Hotstuff communication phases.

AWARE (Adaptive Wide-Area REplication) [2]:

- Uses A additional replicas and develops a deterministic, self-

monitoring and self-optimising algorithm for improving the latency
of the blockchain.

- Combines BFT-SMaRt (enhanced PBFT) [3] as replication protocol
and WHEAT [4] for the underlying weighting distribution scheme

(Vmax =1 + % or Vmin = 1 voting power of each replica).

-+ Self-monitoring - uses a deterministic latency prediction.

- Self-optimisation - employs voting weights tuning and leader
relocation mechanisms.

I 3. Scientific Gap

The impact of weighted voting has been applied so far only on PBFT
in AWARE [2].

This research aims to address the benefits of weighted voting on
streamlined algorithms in terms of latency reduction by studying the
representative Hotstuff [1].

This research also highlights the effectiveness of using a generalised
continuous weighting scheme (rather than the discrete one) for
optimising the recovery performance of the system.

I 5. Results
(a) Hotstuff
1300
12001
‘v 1100-
£
% 1000-
>
| -
S 900/
>
c
@ 800 2
LIU ~7..'~\~0 —‘—"——‘~~h~-.——t——“'——.--'.'-—.——.'—-._—'
% 700- .“““‘<~ *-Ah\ ".N.\ k X
© i N - Vo
) ~ ‘/’ \\ —_— N..__.__._——.—
> N - ——— G == =~
Z 600 —————
500 Basic === = Continuous Weighted
Weighted —e— (Optimal Leader Rotation Weighted
- 4= = Best Assigned Weighted -eo— (Optimal Leader Rotation + Best Assigned) Weighted
400 - - - - - - - -
6 8 10 12 14 16 18 20
#views
1300
“‘r~
12001 ¢ N\ ’_*. r—
\ / Ne—" ‘.\0 ——" e————
m |
E. 1100 \ /
= .
@ 1000)
>
| -
S 9001 S T R IT Ml S Ry
L>J~- N = -
o 8001
)
i
L 700 A’A\ .
g (, \--.—_.—" \\0——..__.’—.‘—.“5,.___.__.
v
> |
Z 600
5001 " % Best Assigned Weighted =—e= (Optimal Leader Rotation Weighted
=== Continuous Weighted -o=(Optimal Leader Rotation + Best Assigned) Weighted
Weighted
400 - - - - - - - -
6 8 10 12 14 16 18 20
#views

1300

1200

Average Latency per View [ms]

500

400

1300

1200

Average Latency per View [ms]

500

400

Delft

]
TUDelft

(b) Chained Hotstuff

University of
Technology

1100

=
O o
o o
o o

800

700

600

Basic
Weighted
===« Optimal Leader Rotation Weighted
- = Best Assigned Weighted
-4— (Optimal Leader Rotation + Best Assigned) Weighted

1100

[
O o
o o
o o

(0]
o
o

700

600

‘/‘ IIIIIII l"'l--*.-..‘u*u- -_--_lz._..
/ JUPIT TR SIIY ap i R S SR
/
/
‘ T
6 8 10 12 14 16 5 -
#views
Weighted
==+ Optimal Leader Rotation Weighted
- = Best Assigned Weighted
‘_l*l“l_*s.*
P
’,*——--" —*'s*/
/ -‘--l-*II"*l--.‘..-.....-’---n‘---l‘....‘
! “.ll“"l-‘.--n‘l‘-
/[e
-““‘
"
6 8 10 12 14 16 v -

#views

Figure 2: Average latency per view of protocol variants with f = 1 and A = 1 (top Figs., non-faulty scenario — all nodes behave normally,
and bottom Figs., faulty one — f nodes holding highest weights are considered idle).

I 4. Methodology

1. Latency prediction models:
- Two models - for the Basic Hotstuff and Chained Hotstuff, respectively.

- Developed based on the deterministic latency prediction method used in AWARE for self-monitoring.
- Emulate the streamlined algorithm behaviour combined with weighted voting.

- Estimate the latency of a protocol run given the set of weights, network scenario and number of views .

2. Simulated Annealing:
We use this metaheuristic method to evaluate the impact of the following possible optimisations on the
Weighted blockchain protocols:

I. Best Assigned - assign the highest Vmax weight to the best performing 2f replicas.
II. Optimal Leader Rotation - find the best succession of leaders to minimise the overall latency.
II1. Optimal Leader Rotation + Best Assigned - combine the two optimisation methods described in I and II.

IV. Continuous (applied only to Hotstuff) - find a continuous weighting scheme that achieves lowest latency
in both faulty and non-faulty scenarios.

Note that the continuous weighting scheme is not limited to the streamlined algorithms but can be applied to any
blockchain consensus one.

Author:
Diana Micloiu

d.micloiu@student.tudelft.nl

Responsible Professor:
Jeremie Decouchant

Supervisor:
Rowdy Chotkan
---Average difference = 113.46 ms 1
4000 i

% _
g 2000
Q
O
(-
g
Q
= 0
©
>
O
(-
g
8

—2000+

—4000- l

0 200 400 600 800 1000

Simulation number

Figure 3: Difference in latency performance between Best Assigned and
Continuous Weighted Hotstuff variants for 1000 faulty scenario
simulations, f = 1,A = 1, 10 views executed.

I 6. Limitations

« The latency prediction models use same weights and
network setting in all views of a protocol run.

« Simulated Annealing algorithms are impractical for n >
15.

« Continuous Weighted Hotstutf is infeasible for f >4 due
to the high computational complexity of the required
quorum safety checks.

I 7. Conclusion

« Only applying weighted voting to Hotstuff and Chained
Hotstuft decreases latency by 77%.

« Optimal Leader Rotation + Best Assigned optimisation
reduces latency by almost 25%.

« Continuous Weighted Hotstuft performs equally well or
better than Best Assigned one in 85% of simulations.

This research represents a founding base for the study of
weighted voting in streamlined algorithms and its shift
from the discrete model.

I References

[1] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and 1. Abraham, “Hotstuff: Bft consensus
with linearity and responsiveness,” in Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, 2019, pp. 347-356.

[2] C. Berger, H. P. Reiser, J. Sousa, and A. Bessani, “Aware: Adaptive wide-area replication
for fast and resilient byzantine consensus,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 3, pp. 1605-1620, 2020.

[3] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for the masses with
bft-smart,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2014, pp. 355—362.

[4] J. Sousa and A. Bessani, “Separating the wheat from the chaff: An empirical design for
geo-replicated state machines,” in 2015 IEEE 34th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2015, pp. 146-155

