Comparing GNN explainer faithfulness quantitatively in molecular property prediction Are GNN explanations for benzene rings comprehensive and sufficient?

Author: Heli Pajari Contact: h.v.m.pajari@student.tudelft.nl Supervisors: Dr. Megha Khosla and Dr. Jana Weber

1. Background	
 Drug development involves predicting molecule properties based on their structure → e.g. toxicity affected by tens of molecule fragments → Graph Neural Networks (GNN) perform well in identifying these fragments → GNNs can reduce time and money spent on drug research 	
GNNs by nature have opaque decision making, their predictions cannot be used as-is → If you don't know how a decision was made, is it safe or ethical to use it?	
Explainable AI (XAI) techniques explain GNN decisions → Performance evaluated with e.g. attribution accuracy/precision, fidelity	
 BAGEL benchmark [1]: offers four task agnostic metrics for evaluating GNN explainers, of which <i>faithfulness</i> is investigated: <i>Faithfulness</i>: does explanation replicate model behavior? <i>Comprehensiveness</i> does explanation select all nodes/edges for a prediction? <i>Sufficiency</i>: are selected nodes/edges enough to come up with model prediction? 	

RQ1 Comprehensiveness and sufficiency of IG explanations

Comprehensiveness: values near 0, predictions for nonexplanations between 0.4 - 0.5

- Modification has significantly lower values than original
- Original formula with hard split performs the best
- All scores far from target value

Sufficiency: values near 0 and usually negative,

predictions for explanations > f(G)

- With a *perfect* explanation, ground truth can be found
- Modification improves the result
- With *imperfect* explanations, modified formula **incorrectly better**: non-benzene rings decrease average
 - 0 not a good target value
- Predictions for molecule and explanation can disagree, shows when explanation not faithful to model

Table 1. Comprehensiveness: original vs. modified, soft vs. hard split

mol	$\mathbf{f}(G)$	$ \begin{array}{l} \text{original} \\ \text{soft} / \text{hard} [f(G)] \end{array} $	$\begin{array}{l} \mbox{modified} \\ \mbox{soft} \ / \ \mbox{hard} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	fragments soft / hard
168	0.482	$0.050 \ / \ 0.052$	$0.050 \ / \ ext{-}0.856$	$1 \ / \ 3$
238	0.448	$0.001 \ / \ 0.009$	$0.001 \; / \;$ -1.402	$1 \ / \ 4$
847	0.513	$0.045\ /\ 0.058$	-0.905 / -2.778	3 / 7
1018	0.537	$0.105 \ / \ 0.103$	$0.105 \ / \ ext{-}0.368$	$1 \ / \ 2$
1637	0.427	-0.001	-0.001	1 / 1

Table 2. Sufficiency: perfect explanation for molecule 1018 original vs. modified

f(G)	$\begin{array}{c} \text{original} \\ \mathbf{f}(G_E) \end{array}$	$\begin{array}{c} \text{modified} \\ \mathbf{f}(G_E) \end{array}$	original sufficiency [0]	modified sufficiency [0]
0.537	0.589	0.581	-0.052	-0.044

Table 3. Sufficiency: *imperfect* explanations, original vs. modified

mol	$\mathbf{f}(G)$	original $f(G_E)$	$\begin{array}{c} \text{modified} \\ \mathbf{f}(G_E) \end{array}$	original vs. modified [0]	fragments
168	0.482	0.565	0.521	-0.083 / -0.039	2
238	0.448	0.466	0.472	-0.018 $/$ - 0.024	2
847	0.513	0.4	462	0.051	1
1018	0.537	0.576	0.551	-0.039 / -0.014	3
1637	0.427		0	0.427	0

2. Research question

"How applicable are comprehensiveness and sufficiency as a way to measure GNN explainer faithfulness in molecular property prediction?"

RQ1 How can comprehensiveness and sufficiency from the Bagel benchmark be modified to work with MPP?

RQ2 How large are the differences in comprehensiveness and sufficiency between explanations from Integrated Gradients and random explanations, using a CMPNN model trained on a penzene ring dataset?

G input graph, G_E explaining graph, G_N nonexplaining graph, f(G) GNN prediction with chemically valid input G

Comprehensiveness = $f(G) - f(G_N)$, target value f(G)**Modified comprehensivenenss:** $f(G_N)$ = sum of predictions for disjoint nonexplaining molecules

Sufficiency = $f(G) - f(G_E)$, target value 0 **Modified sufficiency:** $f(G_E)$ = mean of predictions for disjoint explaining molecules

Average comprehensiveness

Average sufficiency = $\sum_{g \in G} \frac{1}{2}$

4. Results

RQ2 Comparing explainers using the original formulae

Comprehensiveness: IG 4.6% (soft split) and 3.7% better (hard split)

Table 4. Average comprehensiveness, sold split vs. hard split, $H = 000$	Table 4. Average	comprehensiveness:	soft split vs.	hard split, n	= 600
--	------------------	--------------------	----------------	---------------	-------

Та	ble 4.1. Soft split	
	average	% of
explainer	comp % [1]	samples [1]
IG	0.095	0.603
Random	0.049	0.695

- Soft split discards 30 40% of input molecules
- Random has more chemically valid samples

Sufficiency: IG 0.5% better

= random fragment predictions indistinguishable from IG

Table 4.2. Hard split % of average comp % [1] samples [explainer0.125IG 0.9950.957Random 0.088

- Hard split applicable to almost everything, might use very little o an input molecule
- Better results than soft split

Table 6. Average sufficiency, n = 600

explainer	average suff % [0]	% of samples
IG Random	$\begin{array}{c} 0.045 \\ 0.050 \end{array}$	$0.802 \\ 0.957$

3. Methodology

$$= \sum_{g \in G} \frac{\mathbf{f}(g) - \mathbf{f}(g_N)}{f(g)} * \frac{1}{|G|}$$

$$\frac{\mathbf{f}(g) - \mathbf{f}(g_E)|}{f(g)} * \frac{1}{|G|}$$

GNN: CMPNN **Explainers**: Integrated Gradients, random splitting

	5. Conclusions
	RQ 1 Comprehensiveness always low because $f(G_N)$ high
	 Sufficiency low because f(G_E) usually > f(G) 0 not a good target value, requires a ground truth predictions higher with multiple target molecules shows when model and explanation disagree
f	 RQ 2 Comprehensiveness discards much of the data eithe on dataset or molecule level → Comprehensiveness not good for MPP
C	Average sufficiency scores show that any explanation would have good sufficiency due to high model predictions → Sufficiency not good for MPP
-	Comprehensiveness and sufficiency are not applicable for evaluating GNN explainer faithfulness

in molecular property prediction

6. Limitations and future work

Limitations

- Model and explainer accuracy: could not reproduce claimed accuracy, random explainer had accuracy of 0.8 - Implementation: Hard splits not always 1-to-1 with input, results may not be exactly correct

Future work:

- investigate faithfulness metrics that don't require a ground truth or splitting molecules, such as RDT-fidelity from BAGEL

References and acknowledgements

[1] Rathee, M., Funke, T., Anand, A. & Khosla, M. BAGEL: A benchmark for assessing graph neural network explanations, 2022.

[2] Jiahua, R., Shuangjia, Z., Ying, S., Jianwen, C., Chengtao, L., Jiancong, X., Hui, Y., Hongming, C., & Yuedong, Y. Molrep: A deep representation learning library for molecular property prediction. bioRxiv, 2021.

Poster template adapted from PosterNerd