
An Empirical Study ofVersion Conflicts in Maven-Based Java Projects
Author: Valentin-Vlad Mihăilă1 (V.V.Mihaila-1@student.tudelft.nl)

Supervisors: Sebastian Proksch1 Cathrine Paulsen1

1EEMCS Faculty, Delft University of Technology, The Netherlands

Introduction

Software projects commonly use third-party libraries to increase software

quality, developer productivity and reduce development costs [1].

However, intensive use of libraries may cause what developers call

dependency hell. One such manifestation are version conflictswhich

occur when a project depends on multiple versions of the same library.

In Java projects, only one library version is loaded at runtime, which may

lead to errors or unexpected program behaviour at runtimewhen the

conflicting versions are incompatible.

Prior work byWang et al. [2] studied dependency conflicts in

open-source software, but identified only 39 cases of version conflicts

targeted at one well-maintained software ecosystem. This narrow scope

limits the generalizability of their findings.

The study fills gaps in existing research by investigating 124 GitHub pull

requests that addressed version conflicts in 85 open-source Java

projects built with Maven.

Research Questions

RQ1: How can we quantitatively measure developer effort spent

resolving version conflicts?

RQ2: To what extent does adherence to Semantic Versioning mitigate

runtime errors caused by version conflicts?

RQ3: What resolution strategies do developers use to fix version

conflicts?

Background

Maven Dependency Resolution Model

In Maven, developers declare third-party libraries as direct dependencies in a

pom.xml file, which often have their own dependencies (called transitive de-

pendencies). By default, Maven dependencies are specified using fixed ver-

sion numbers. This can easily cause version conflicts, especially when de-

pendencies transitively rely on distinct versions of shared third-party

libraries (Figure 1).

To mediate version conflicts, Maven ap-

plies a ”nearest wins” strategy, select-

ing the dependency that is closest to the

root of the dependency tree. However,

if the selected dependency lacks func-

tionality required by components that

rely on different, incompatible versions

of the same library, runtime errors such

as NoSuchMethodErrormaybe triggered.

Figure 1. Example of a version conflict

caused by distinct versions of a shared

third-party library.

The Maven Dependency Plugin [3] offers the dependency:tree goal to help
developers detect version conflicts. Nevertheless, the output can become

very long and the tool does not indicate which conflicts might be harmful.

Semantic Versioning (SemVer)

Proposed as a partial solution to the depen-

dency hell problem, SemVer defines a three-

digit versioning scheme meant to encode

compatibility promises (Figure 2). According

to this scheme, conflicting versions that dif-

fer in the PATCH or MINOR parts should be
backward-compatible.

Figure 2. SemVer scheme.

Despite the benefits of SemVer, Raemaekers et al. [4] found that while many

Maven Central libraries appear to adhere to SemVer guidelines, breaking

changes are sometimes introduced even in minor version updates.

Data Collection

The three-step data collection

process (Figure 3) replicates the

methodology of Wang et al. [2] to

identify documented occurrences

of version conflicts in open-source

projects, extending it to a larger

and more diverse sample. Figure 3. Overview of the three-step process to collect version conflicts.

(1) 5,919 Java projects created in the last 10 years were selected using the SEART GitHub Search
Engine [5], based on popularity and maintainability criteria (≥ 50 stars, ≥ 50 total issues);

(2) 196mergedpull requests (PRs)were identified using theGitHubRESTAPI [6] based on relevant
keywords (e.g., ”NoSuchMethodError”, ”version conflict*”);

(3) A final dataset of 124 PRs in 85 Java projectswas compiled after manual inspection, excluding
false positives and duplicates.

RQ1: Developer Effort

To address understanding gaps about the level of de-

veloper effort involved in resolving version conflicts,

we investigated four metrics derived from GitHub

activity data (Figure 4):

Comments: Most PRs (84.7%) had between 0 and

5 comments. However, 15.4% were identified as

bot-generated or automation commands;

Merge Time: The median time to merge was 14

hours, moderately correlated with the number of

comments (ρ = 0.38, n = 124);
Detection to Resolution Time: For 29 PRs linked

to issues, the median time from detection to

resolution was 90.1 hours, moderately correlated

with the merge time (ρ = 0.52, n = 29);
Java Line Changes: The majority of PRs (71.8%)

made no changes to Java source code.

Using z-score normalization, we found that 86.3%PRs

were merged more quickly than other PRs from the

same repository. In a subset of 85 PRs, 74.1% PRs

also had fewer comments.

x̃ = 2.0
0

20

40

(a) Comments

x̃ = 14.0
0

250

500

750

(b) Merge Time (h)

x̃ = 90.1
0

500

1000

1500

(c) Detection to

Resolution Time (h)

x̃ = 0.0
0

500

1000

(d) Java Line Changes

Figure 4. Distributions of developer effort metrics

derived from GitHub PR activity.

RQ1 Findings: The four proposed PR activity metrics are not fully reliable, as they may be affected by

unrelated changes, external delays or automation commands. These findings suggest that purely quan-

titative measures may be insufficient on their own, highlighting the need for qualitative validation.

RQ2: SemVer Adherence

Major
15.0%

Minor
49.5%

Patch
22.6%

Other
0.1%

Invalid SemVer
12.9%

Figure 5. Distribution of semantic differences

in 52,417 version conflicts.

To address literature gaps about whether SemVer actually mit-

igates runtime failures caused by version conflicts, we identi-

fied 52,417 version conflicts across 70 of the 85 Java projects.

Each pair of conflicting versions was assigned a semantic dif-

ference: Major, Minor, Patch or Other. Overall, 87.1% of the

conflicts adhered to the SemVer syntax (Figure 5).

A manual inspection of 35 PRs with runtime errors due to

version conflicts revealed 7 cases caused by backward incom-

patibility between library versions. Notably, three of these in-

stances involved minor or patch differences, indicating viola-

tions of SemVer’s backward-compatibility guarantees.

RQ2 Findings: Despite widespread use of SemVer syntax, 80% of observed runtime errors resulted

from forward incompatibilitieswhich are not covered by SemVer. Additionally, as highlighted in the three

concrete cases, even SemVer-compliant libraries may break backward-compatibility.

RQ3: Resolution Strategies

0 10 20 30 40
PRs

I. Controlling dependency versions locally

II. Managing dependency versions centrally

III. Excluding transitive dependencies

IV. Removing or replacing dependencies

V. Shading dependencies

R
e
so
lu
ti
o
n
C
a
te
g
o
ry

Figure 6. Distribution of resolution strategies used by developers to address version

conflicts in 124 PRs from 85 Maven-based Java projects.

To extend existing research into howdevelopers resolve version conflicts [2],

we manually reviewed the sample of 124 PRs and identified five categories

of common resolution strategies, covering 95.2% of the sample (Figure 6).

RQ3 Findings: Library harmonization (i.e., aligning) of library versions was

the most frequently applied strategy (Categories I and II), resolving conflicts

in 67.7% of the sample. In addition, we observed a smaller but noteworthy

use of conflict prevention strategies (such as the Maven Enforcer Plugin [7])

that offer promising opportunities to detect and avoid conflicts earlier in the

development process.

Conclusions and FutureWork

RQ1: Quantitative activity metrics alone offer limited insight into
developer effort, as they are often noisy and influenced by confounding

factors. Future work should incorporate qualitative methods to validate

such effort estimations (e.g., developer surveys [8] or interviews [9]).

RQ2: Our findings suggest that SemVer’s effectiveness is limited in
practice and relying solely on version numbers is often insufficient to

ensure compatibility. To mitigate such risks, developers should validate

selected versions through compatibility testing.

RQ3: Our study revealed library harmonization as the dominant
resolution strategy, supporting the development of version

harmonization tools such as LibHarmo [8]. Although less frequent in our
dataset, conflict prevention strategies show potential for solving version

conflicts before they manifest at runtime, motivating further research

into their adoption and long-term effectiveness.

Ultimately, our study provides real-world insights into version conflicts as

a common manifestation of dependency hell and aims to inform the devel-

opment of more effective dependency management tools and practices. By

helping developers bettermanage project dependencies, we hope to support

more reliable and maintainable software.

References

[1] P. Mohagheghi and R. Conradi, “Quality, productivity and economic benefits of software reuse: A review of industrial studies,”

Empirical Software Engineering, vol. 12, no. 5, pp. 471–516, 2007.

[2] Y. Wang et al., “Do the dependency conflicts in my project matter?” In Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista FL USA:

ACM, 2018, pp. 319–330.

[3] Apache Maven Dependency Plugin, [Online]. Available: https://maven.apache.org/plugins/maven-dependency-plugin/.

[4] S. Raemaekers et al., “Semantic versioning and impact of breaking changes in the Maven repository,” Journal of Systems and

Software, vol. 129, pp. 140–158, 2017.

[5] O. Dabic et al., “Sampling projects in github for MSR studies,” in 18th IEEE/ACM International Conference on Mining Software

Repositories, MSR 2021, IEEE, 2021, pp. 560–564.

[6] GitHub REST API documentation, [Online]. Available: https://docs-internal.github.com/en/rest?apiVersion=2022-11-28.

[7] Apache Maven Enforcer Plugin, [Online]. Available: https://maven.apache.org/enforcer/maven-enforcer-plugin/.

[8] K. Huang et al., “Interactive, effort-aware libraryversion harmonization,” in Proceedings of the 28thACMJointMeeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2020, New York, NY,

USA: Association for Computing Machinery, 2020, pp. 518–529.

[9] I. Pashchenko et al., “A Qualitative Study of Dependency Management and Its Security Implications,” in Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’20, NewYork, NY, USA: Association for Computing

Machinery, 2020, pp. 1513–1531.

https://maven.apache.org/plugins/maven-dependency-plugin/
https://docs-internal.github.com/en/rest?apiVersion=2022-11-28
https://maven.apache.org/enforcer/maven-enforcer-plugin/

	References

