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How do different properties of a graph impact the stability of its
graph convolutional network(GCN) against topological
perturbations?
Which combinations of graph properties can act as reliable
indicators of instability in GCNs?

GCNs:  Models built on a special form of convolution that uses a
shift operator [1]

Stability:  A GCN’s ability to output accurate information when
the graph’s topology is different, i.e. perturbed 
Theoretical bounds have already been set on stability, but those
bounds are often loose [2]
Relationship between properties of graphs and real stability is
still unknown

4. Graph Properties Under Investigation

The task under investigation is semi-supervised node
classification on undirected and unweighted graphs
Topology Adaptive Graph Convolutional  Networks (TAGConv) [3]
are used as the GCN implementation

Measuring Stability:
 A TAGConv is trained on a graph G, the final layer’s output x is
saved
G is perturbed and the output of the trained TAGConv for
perturbed G is stored (y)
The error is calculated using the relative euclidian distance
between x and y:

Challenge: Existing graph datasets have a limited range in graph
properties [4]
Solution: Synthetically generate the datasets using:

Stochastic Block Model [5]
 Lancichinetti–Fortunato–Radicchi Model [6]

Figure 1: A visualization of the graph convolution operation,  when
the shift operator is applied twice []

Diameter: Maximum shortest path between any pair of vertices in a graph.  
Edge Connectivity:  The minimum number of edges that need to be removed to make the graph
disconnected
Clustering:  Measure of how much nodes tend to cluster together. Calculated by dividing the number
of closed triplets by the total number of triplets (both open and closed)
Density: Density represents how dense the edges are in the graph. It is the ratio of the number of
edges to the number of all possible edges
Assortativity: Specifically, nominal assortativity, a measure  of how likely similar nodes are to be
connected to each other. 
Closeness Centrality:  The average distance of a node to every other node in the graph. In the context
of this research, it is averaged over all nodes.

Figure 2: A graph with 8 nodes, generated using the Stochastic Block Model with a diameter of 6,
connectivity of 1, clustering of 0.21, assortativity of -0.48 and centrality of 0.5

Size and Types of Perturbations:
The size of the perturbation is 10% of the number of edges in
the graph
The perturbations should not result in self loops or create
parallel edges
Addition:  Add an edge between two random nodes
Deletion: Delete a random edge
Rewiring: Add and delete edges in the graph, while keeping
the degree sequence untouched

Figure 3: Box plot displaying errors obtained from graphs with different assortativity

Figure 4: Box plot displaying errors obtained from graphs with different edge connectivity

Figure 7: Perturbations that caused the maximum amount of error. Added edges highlighted in green,
removed in red
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Key Takeaways:
The range of the errors of a GCN obtained from different perturbations is correlated
with its vulnerability to adversarial perturbations, which are small perturbations
introduced explicitly in order to cause a large deviation in output
GCNs appear to be a lot less stable against addition perturbations.

This is possibly caused by the instability of integral lipschits filters against
relative perturbations

Stability against addition is inversely correlated with assortativity while deletion is
directly correlated.
As a general principle, the more connected a graph is the more stable it is, and less
vulnerable to adversarial attacks: stability increases with centrality and connectivity

The  error spikes at the middle values of closeness centrality in Figure 5 is
explained in Figure 6(b). It appears that they are caused by high values in
assortativity, and stability is correlated directly to centrality as long as
assortativity remains the same
Very low values in diameter can also cause spikes in error for deletion
perturbations when number of edges is low, likely because in such graphs,
specificedges play a very crucial role in the graph and their removal  causes
drastic changes in the graph

Deletion: It is possible to create many isolated subgraphs by removing few
edges. Low connectivity, which results in low stability. The perturbation also
leverages this fact.
Addition: The graph is already highly connected. But the perturbation
focuses on connecting certain regions, instead of being scattered around the
graph, causing a deviation.

Figure 6: Scatter plotsshowcasing the relationship between 2 different graph properties and the error

Figure 5: Box plot displaying errors obtained from graphs with different centrality


