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This research aims to improve ChangeDistiller’s runtime
performance by adapting it to leverage optimizations
provided by HyperAST—a data representation framework
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ChangebDistiller is a tree differencing algorithm with a
bottom-up matching approach on coarse-grained ASTSs, f \

Textual differencing compares text files line by line, focusing on statement-level analysis distinct from the top- 7. Caching for St'ring Simila'rity 8. Results
identifying insertions & deletions. down fine-grained approach the GumTree algorithm uses.
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In the leaves matcher, we implemented caching for leaf We evaluated our optimized ve.rs.ion against the base!ine
HyperAST is a data structure framework optimized for node string representations, lazily computing n-grams to on the Defect4] dataset, containing 1046 real-world file
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. f .. . \ Generalize to Other Tools: Apply HyperAST optimizations

bift S. Range Based Slmllanty P 3 to different algorithms (e.g., MTDiff, RefactoringMiner).

HyperAST stores nodes in post-order arrays, which allow us to efficiently get all @ \(:) G- (:) a > Top-Down Matching: Integrate a preliminary top-down

+ descendants by taking a range from the left-most leaf descendant to the node itself. . (')' & (") 2 2 | phase to further reduce computation and improve lazy
This enables efficient range-based similarity computation in the bottom up phase, o i = .:"‘. =y i = decompression effectiveness.

. pra— allowing direct access to a node's descendants without tree iteration. I Native Coarse-Grained ASTs: Extend HyperAST to natively

support statement-level ASTs for even faster processing.
Broader Evaluation: Test on more languages, analyze full

Qistories, and assess memory usage. /

Subtree similarity

Ksub‘creeSimilari‘cy = diceSim(11d( A )..id( A ),11d( B )..id( B )) computation time




