Accelerating AST-Based Code Differencing Leo Mangold

Optimizing ChangeDistiller’s Bottom-Up Matching Strategy with HyperAST 2025

1. Introduction /2 Research Questions \ /6 Hash Preliminary Matching \

Trafjitional code cc.)mhparison tools like Unix’ ‘dif'f operate on Which HyperAST optimization techniques can be When matching leaves we use hash based preliminary matching to reduce most of the O(n+m) string similarity computations to
this by analyzing Abgstract Syntax Trees (ASTs),E)ut they Y A3 2, nOd.eferII:(Iit)y ; hash(®) then 1 0(1)
struggle to scale with large codebases. How does the adapted ChangeDistiller's runtime ‘ PN 0~ 1T hasht A7) = has e

performance compare to the original algorithm? else stringSim(A, B) 0(n+m)

This research aims to improve ChangeDistiller’s runtime
performance by adapting it to leverage optimizations
provided by HyperAST—a data representation framework

S] T ’,' . R .
optimized for large scale AST Differencing / \ \ AL ___:::r_——::c‘__, ______ - ® string similarity
3. Background e

] I hash String Similarity
e 9 9 . 9 O/O Computations Eliminated

ChangebDistiller is a tree differencing algorithm with a
bottom-up matching approach on coarse-grained ASTSs, f \

Textual differencing compares text files line by line, focusing on statement-level analysis distinct from the top- 7. Caching for St'ring Simila'rity 8. Results
identifying insertions & deletions. down fine-grained approach the GumTree algorithm uses.

Text Differencing

In the leaves matcher, we implemented caching for leaf We evaluated our optimized ve.rs.ion against the base!ine
HyperAST is a data structure framework optimized for node string representations, lazily computing n-grams to on the Defect4] dataset, containing 1046 real-world file

Code v1 Y Code vz large scale code analysis, with deduplication, fast data optimize performance and reduce redundant calculations. RIS EU LRI e s

Diff access and precomputed metadata.
Variant Total Runtime Median per File Median Speedup

- Deep Statements
No Cache Baseline 4.5 hours 3,149 ms
= f . . diceSim(Optimized 2.3 min 31.6ms
_ 4. Statement iteration makeNgrams(A), |for a1l Opt. + Cache 2.3 min 299 ms
* ChangeDistiller’s AST leaves represent statements. makeNgrams(&)) Sha"?w Statements)
Baseline 39 min 457 ms
Optimized 1.5 min 15.6 ms
/ | \ Opt. + Cache 8.8 sec 3.8ms
- N-Gram Cache
Differencing on ASTs / \ makeNgrams(A) ,makeNgrams(B)] once All v.ariants sh.ow significant. improvements fand.positive
AST-based differencing compares two code files by - - W scaling behavior. Shal.lovx./ Wlth N-gram cachmg is the :
converting them to AST representations and analyzing Coarse Grained AST Cache ngramsA ngramsB RSl E IRl 2 el E el sl
the dif‘ferences between them' m O Deep - DeepandNgram Cache X Shallow 4 Shallow and Ngram Cache
Since HyperAST uses fine-grained ASTs, we built a custom . . 2 Speedup of Optimized over Baseline
iterator that treats statement nodes as logical leaves. This diceSim(noransh , nozanst) j for all 1,000~
iterator has two variants: one for the deepest statements 800-
and one for the largest (possibly containing statements). igg‘
200 .
Code vl Code v2 //'-I\\ \ /I"l\\ \,”-\\ For deep Statements’ n-gram CaChing offered a 4% 0 1'000 | 2'000‘] Linesso'fdggde in Beljgg‘fl)Filea
¢ ¢ // 4 /'I),/ \ improvement over the optimized version without caching.
7 //' /'*((\"\ / /," / /N \\ For shallow processing, caching reduced the median HyperAST’s optimizations make ChangeDistiller
AN AN WO/ ® AN ‘\.\\\\ {4 7 AN runtime by 79% compared to no caching. significantly faster and scalable, enabling more efficient
L@ , @ /'/ / \ \\\“‘ \ ,/' / \ \ ‘\\ analysis of large codebases.

. o \ / Median Speedup Compared to
A . 2 T Smmmmmmmsooomoooe ‘ 1 1 ; ,9X Baseline with Shallow Statements
\ Deep Statements Shallow Statements / \ /

N2 v f \
AST vi —~— AST v2 9. Future Work
. f .. . \ Generalize to Other Tools: Apply HyperAST optimizations

bift S. Range Based Slmllanty P 3 to different algorithms (e.g., MTDiff, RefactoringMiner).

HyperAST stores nodes in post-order arrays, which allow us to efficiently get all @ \(:) G- (:) a > Top-Down Matching: Integrate a preliminary top-down

+ descendants by taking a range from the left-most leaf descendant to the node itself. . (')' & (") 2 2 | phase to further reduce computation and improve lazy
This enables efficient range-based similarity computation in the bottom up phase, o i = .:"‘. =y i = decompression effectiveness.

. pra— allowing direct access to a node's descendants without tree iteration. I Native Coarse-Grained ASTs: Extend HyperAST to natively

support statement-level ASTs for even faster processing.
Broader Evaluation: Test on more languages, analyze full

Qistories, and assess memory usage. /

Subtree similarity

Ksub‘creeSimilari‘cy = diceSim(11d(A)..id(A),11d(B)..id(B)) computation time

