
Optimizing ChangeDistiller’s Bottom-Up Matching Strategy with HyperAST 2025
Accelerating AST-Based Code Differencing Leo Mangold

1. Introduction
Traditional code comparison tools like Unix’ diff operate on
plain text, often missing structural changes in software.
Tools such as ChangeDistiller and GumTree improve on
this by analyzing Abstract Syntax Trees (ASTs), but they
struggle to scale with large codebases.

This research aims to improve ChangeDistiller’s runtime
performance by adapting it to leverage optimizations
provided by HyperAST—a data representation framework
optimized for large scale AST Differencing

Text Differencing

Textual differencing compares text files line by line,
identifying insertions & deletions.

Differencing on ASTs

AST-based differencing compares two code files by
converting them to AST representations and analyzing
the differences between them.

Diff

AST v1

Code v1

AST v2

Code v2

Diff

Code v1 Code v2

2. Research Questions

3. Background
ChangeDistiller is a tree differencing algorithm with a
bottom-up matching approach on coarse-grained ASTs,
focusing on statement-level analysis distinct from the top-
down fine-grained approach the GumTree algorithm uses.

HyperAST is a data structure framework optimized for
large scale code analysis, with deduplication, fast data
access and precomputed metadata.

7. Caching for String Similarity
In the leaves matcher, we implemented caching for leaf
node string representations, lazily computing n-grams to
optimize performance and reduce redundant calculations.

diceSim(
 makeNgrams(A),
 makeNgrams(B))

No Cache

for all

makeNgrams(A),makeNgrams(B)
N-Gram Cache

for all

once

diceSim(ngramsA , ngramsB)

 Cache ngramsA ngramsB

For deep statements, n-gram caching offered a 4%
improvement over the optimized version without caching.
For shallow processing, caching reduced the median
runtime by 79% compared to no caching.

117.9x Median Speedup Compared to

Baseline with Shallow Statements

4. Statement iteration
ChangeDistiller’s AST leaves represent statements.

Coarse Grained AST

Since HyperAST uses fine-grained ASTs, we built a custom
iterator that treats statement nodes as logical leaves. This
iterator has two variants: one for the deepest statements
and one for the largest (possibly containing statements).

Deep Statements Shallow Statements

6. Hash Preliminary Matching
When matching leaves we use hash based preliminary matching to reduce most of the O(n+m) string similarity computations to
simple O(1) hash comparisons.

nodeSimilarity =
if hash(A) == hash(B) then 1 O(1)
else stringSim(A , B) O(n+m)

string similarity
equal hash

V1 V2

99.9% String Similarity
Computations Eliminated

5. Range Based Similarity
HyperAST stores nodes in post-order arrays, which allow us to efficiently get all
descendants by taking a range from the left-most leaf descendant to the node itself.
This enables efficient range-based similarity computation in the bottom up phase,
allowing direct access to a node's descendants without tree iteration.

subtreeSimilarity = diceSim(lld(A)..id(A),lld(B)..id(B)) -91% Subtree similarity
computation time

V1 V2

1 Which HyperAST optimization techniques can be
adapted to the ChangeDistiller algorithm?

2 How does the adapted ChangeDistiller's runtime
performance compare to the original algorithm?

9. Future Work
Generalize to Other Tools: Apply HyperAST optimizations
to different algorithms (e.g., MTDiff, RefactoringMiner).

Top-Down Matching: Integrate a preliminary top-down
phase to further reduce computation and improve lazy
decompression effectiveness.

Native Coarse-Grained ASTs: Extend HyperAST to natively
support statement-level ASTs for even faster processing.

Broader Evaluation: Test on more languages, analyze full
histories, and assess memory usage.

8. Results
We evaluated our optimized version against the baseline
on the Defect4J dataset, containing 1046 real-world file
pairs of Java bug fixes.

4.5 hours

29.9 ms

8.8 sec 3.8 ms

15.6 ms

3,149 ms

118×

94×

39 min

2.3 min

2.3 min

1.5 min

31.6 ms

457 ms

24×

98×

Deep Statements

Baseline

Optimized

Opt. + Cache

Shallow Statements

Baseline

Optimized

Opt. + Cache

Variant Total Runtime Median SpeedupMedian per File

All variants show significant improvements and positive
scaling behavior. Shallow with N-gram caching is the
fastest and shows a significantly stronger scaling behavior.

HyperAST’s optimizations make ChangeDistiller
significantly faster and scalable, enabling more efficient
analysis of large codebases.

