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1. Background

Context

- swarms are groups of interacting entities whose behaviors lead to
the emergence of complex behavior that wouldn’t be achievable by
each part alone

- swarming behavior has evolved independently in many animal
species

- understanding swarms can lead to useful applications

Problem under scope

- zero sum game with potentially real-life applications involving a prey
swarm and a predator swarm

- the prey swarm tries to reach the target fast and with minimal losses

- the predator swarm tries to destroy the prey agents

- when a predator agent hits a prey agent, both agents get destroyed

- when an agent, predator or prey, hits an obstacle, the agent gets

destroyed

- when a predator agent hist the target area, the agent gets

destroyed

- prey agents spawn in the safe (green) area

- obstacles spawn randomly in the danger (red) area

2. Research Questions & Method

Research Questions

1. Can the number of prey agents that reach the target be increased
and their travel time be decreased through the creation or use of
smart prey swarm control algorithms? If so, how would such a
algorithms work? How would they compare with each other?

2. Given some prey swarm control algorithm, can the number of prey
agents that reach the target be decreased or their travel time be
Increased through the creation or use of smart predator swarm
control algorithms? If so, how would such a algorithms work? How
would they compare with each other?

Methodology

- first examine obstacle avoidance algorithms, since they are needed
for both prey and predator.

- develop the prey and predator algorithms iteratively in an arms-race
manner.

- benchmark the performance of the algorithms using self-
iImplemented simulation software
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3. Algorithms

Boids

- computational model emulating flocking (Craig Reynolds)
- behavior: alignment, cohesion, separation

- easily extendable

- forms the theoretical basis for this paper

(a) Alignment (b) Cohesion

(c) Separation

(Tae Jong Choi and Chang Wook Ahn, 2019, see ref. [1])
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- make use of a clustering
algorithm to identify sub-swarms
- divide the predator swarm
accordingly, such that each
predator sub-swarm deals with
one prey sub-swarm

- K-Means could be used for this
purpose, however doing it every
frame 15 computationally
expensive.

Clustering
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4. Results

All algorithms described in the previous section were benchmarked
using the simulation framework created for this research. During
the benchmarking process the success rate (average percentage
of prey agents succeeding in reaching the target) and the average
trial time (how long it takes on average for all prey agents to reach
the target) were measured.

Two types of experiments were performed, obstacle avoidance and
predator vs. prey. The obstacle avoidance experiment aimed to
test the capabilities of the collision avoidance strategies common
to both the prey and predator control algorithms. In contrast, the
predator vs. prey experiment was done to analyze how the 2
categories of algorithms behave against each other.

The outcomes of the experiments were to a high extent influenced
by the chosen hyperparameters.

Obstacle avoidance benchmark. Results averaged over

Obstacle avoidance benchmark. Results averaged ever 1000 trials in environments with 30 random obstacles.

1000 trials in environments with 10 random obstacles.

Success Rate Success Rate

Algorithm Success Rate Avg. Time [s] Algorithm Success Rate  Avg. Time [s]
Baseline 0.43 67.28 Baseline 0.1 48.62
Outwards Field 0.87 7972 Outwards Field 0.6 9213
Spiral Field 0.9z 9273 Spiral Field 0.5 132.81
Directed Spiral Field 092 95.47 Directed Spiral Field . 128.29
Steer Away 0.84 78.01 Steer Away . 67.98
Kitchensink 0.95 91.66 Kitchensink . 129.25

Predator vs. prey

Prey control algorithms benchmarked against center
steering predators. Results averaged over 1000 trials in
environments with 10 random obstacles.

Prey control algorithms benchmarked against center
steering predators. Results averaged over 1000 trials in
environments without obstacles.

Algorithm Success Rate  Avg. Time [s] Algorithm Success Rate  Avg. Time [s]
Baseline 0.54 71.63 Baseline 0.45 87.77
Evasive 0.89 93.98 Evasive 0.57 108.22
Explode 0.65 89.99 Explode 113.79
Explode-Evasive 0.88 121.42 Explode-Evasive 133.39
Jump 0.52 76.23 Jump . 95.38
Split 0.62 111.62 Split 1339
Split-Evasive 0.94 137.47 Split-Evasive 152.76

Prey control algorithms benchmarked against png Prey control algorithms benchmarked against png

predators. Results averaged over 1000 trials in predators. Results averaged over 1000 trials in
environments without obstacles. environments with 10 random obstacles.

Algorithm Success Rate  Avg. Time [s] Algorithm Success Rate  Avg. Time 3]

Baseline 0.37 92.78
Evasive 0.34 151.37
Explode 0.58 118.32
Explode-Evasive 0.5 195.2
Jump 100.88
Split 138.3

Split-Evasive : 200.38

Baseline 0.13 61.24
Evasive 0.22 134.57
Explode 0.79 90.52
Explode-Evasive 0.66 162.25
Jump 0.13 65.08
Split 0.64 112.64
Split-Evasive 195.33
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5. Conclusion

- most proposed algorithm perform better than the baseline
(no algorithm at all), which means they are all successful at
least to some degree at their intended task.

- the spiral field obstacle avoidance algorithms performed
worse than expected. A formal analysis of possible deadlock
situations could lead to potential improvements to the
algorithms.

- the cluster predator was too computationally expensive for
benchmarking. A fast algorithm for tackling prey sub-swarms
would be a good research direction.

- neural network approaches to both prey and predator
control could be looked into in a future research

- the jump predator avoidance strategy was not a good idea,
since it is as bad as the baseline

Notation Legend & Parameters

Notation Legend
* R(x) - 2D rotational matrix

» v - small steer away adjustment angle

; - boid i

; - position vector of boid i . .
P » A, - set of anti-neighbors of agent i

i - velocity vector of boid i » C.A. - genetic collision avoidance term.

i - neighbors of boid i . ﬁ - steering force driving the agents.

*; - mean position of neighbors * B - set of all prey boids.

§; - separation force of boid 1 | * P - set of all predators.

) o e ¢. - evasive force
- - cohesion force of boid 1 ‘

* ca; - mean position of neighbors of agent 1 that are part

m; - matching force of boid i of a different sub-swarm.

f; - steering force of boid i * d, - anti-neighbor force

* d, - distance between target and expected collision point
(in the context of the collision pyramid).

* §(r) - outwards force field

* w, - outwards field strength

* d - threshold distance in various contexts

* h(F) - spiral force field

* wy, - spiral force field outwards component strength

* d, - distance between predator and expected collision
point (in the context of the collision pyramid).

* v, - predator / pursuer speed

* v, - approximated target / prey speed

Hyperparameter values

e hq(7) - anti-clockwise spiral force field
e h.(7) - clockwise spiral force field
. Edw(ﬁ §) - directional force field = explosion time - 50

» 5 -steering direction (difference between the target’s po- *J-3.0
sition vector and the boid’s position vector) ' « A-200.0

« { - position vector of target area : ) * anti neighbor time - 30.0

* 0; - position vector of object j anti neighbor distance - 50.0

* 5 - the radius of the agent (see diagram) perception distance - 30

* S5 - the radius of the obstacle (see diagram) .
. . swarm distance - 3
» [, - distance between agent center and boundary inter-

section point (see diagram) number of prey agents - 6

* [, - distance between obstacle center and boundary in- number of predator agents - 15

tersection point (see diagram)
* « - boundary angle (steer away context)

» (3 - actual steering angle with respect to obstacle (i.e. if 3
is within 4+« and —a, the agent will hit the target (steer
away context)

» A7 - relative position vector between agent and obstacle
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