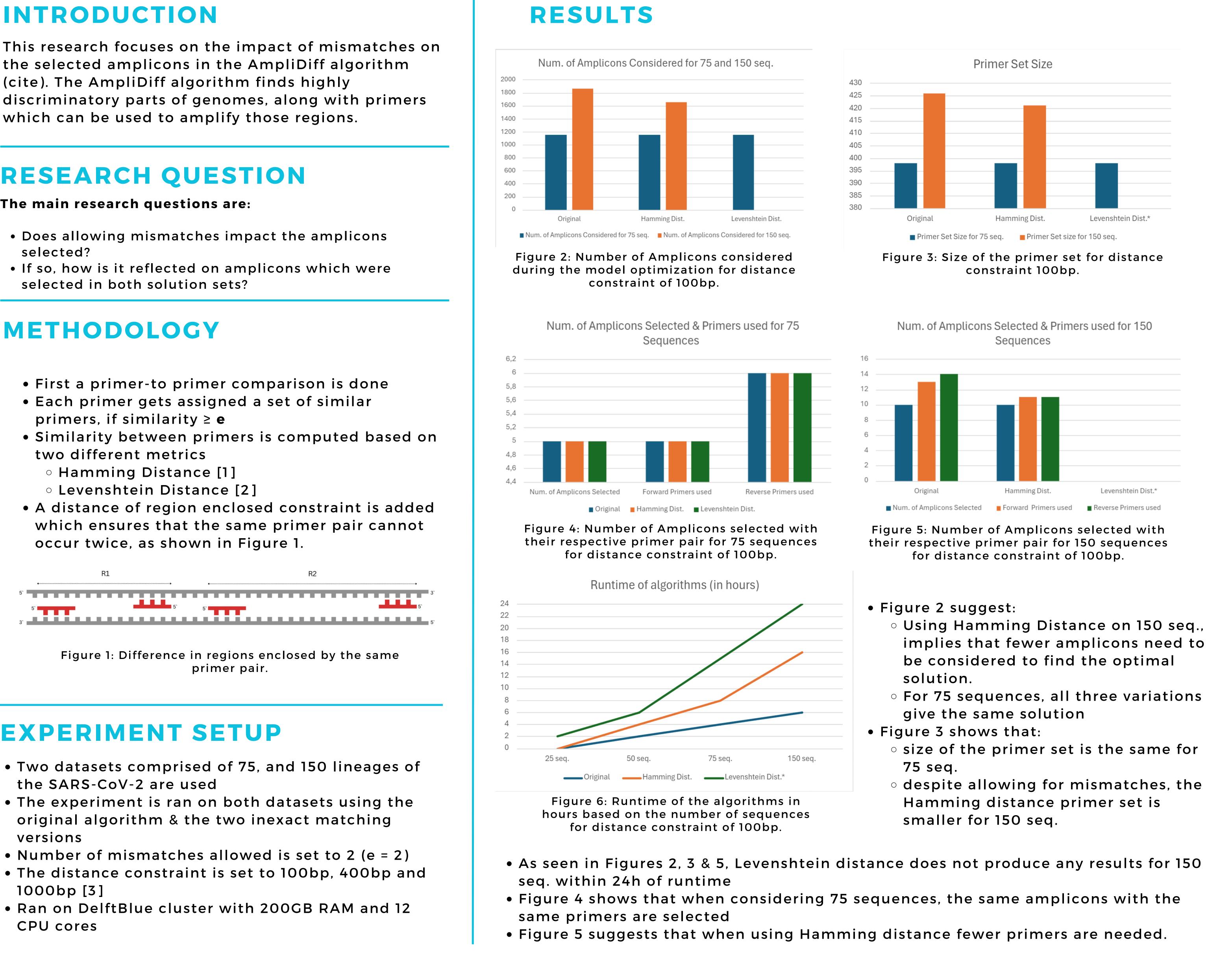
A Mismatch Relaxation to the Primer Selection Process of an Amplicon Sequencing Algorithm

INTRODUCTION

the selected amplicons in the AmpliDiff algorithm (cite). The AmpliDiff algorithm finds highly which can be used to amplify those regions.


RESEARCH QUESTION

The main research questions are:

- Does allowing mismatches impact the amplicons selected?
- If so, how is it reflected on amplicons which were selected in both solution sets?

METHODOLOGY

- two different metrics
- Hamming Distance [1]
- occur twice, as shown in Figure 1.

EXPERIMENT SETUP

- the SARS-CoV-2 are used
- original algorithm & the two inexact matching versions
- Number of mismatches allowed is set to 2 (e = 2)
- 1000bp [3]
- Ran on DelftBlue cluster with 200GB RAM and 12 CPU cores

Responsible Professor: Jasmijn Baaijens Supervisor: Jasper van Bemmelen

- Using Hamming Distance on 150 seq., implies that fewer amplicons need to
- For 75 sequences, all three variations
- size of the primer set is the same for
- despite allowing for mismatches, the

CONCLUSION

- - Allowing for primer mismatches does impact the amplicons in the solution set.
 - It takes fewer amplicons to find the optimal solution

 - The amplicons selected completely differ from the ones in the original algorithms solution It takes significantly more time to compute
- Levenshtein Distance: • The similarity introduces overheads such that finding a feasible solution in less than 24h with given computational power

 - Does not contribute to a better solution set for smaller sequences
- Setting the constraint to a value higher than 100bp makes it so that the model is overly stringent, hence, no solution can be found.

FUTURE IMPROVEMENTS

- Relaxing the distance region enclosed constraint • Optimizing the computation of Levenshtein distance by utilizing a smaller comparison matrix

REFERENCES

[1] Richard W Hamming. Error detecting and error correcting codes. The Bell system technical journal, 29(2):147-160, 1950.

[2] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union, 1966.

[3] Scott W Tighe, Andrew F Hayden, Marcy L Kuentzel, Korin M Eckstrom, Jonathan Foox, Daniel L Vellone, Kristiaan H Finstad, Pheobe K Laaguiby, Jessica J Hoffman, and Sridar V Chittur. Molecular characterization of increased amplicon lengths in sars-cov-2 reverse transcription loop-mediated isothermal amplification assays. Journal of biomolecular techniques: JBT, 32(3):199, 2021.

[4] Jasper van Bemmelen, Davida S Smyth, and Jasmijn A Baaijens. Amplidiff: An optimized amplicon sequencing approach to estimating lineage abundances in viral metagenomes. bioRxiv, pages 2023-07, 2023.

```
Dean Polimac - d.polimac@student.tudelft.nl
```

• Hamming Distance:

• Using a weighted similarity score