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o) Introduction 02

e Continuous Integration (CI)
o practice in software development, widely
recognised and adopted
o involves frequent merging into central
repository [1].
o Cl implementation != "one size fits all
solution” <- constraints and contexts.
 Performance of Cl Build Stage
o "heart of software development ecosystem”

Resedarch Question

What are the most descriptive metrics
for identifying build performance?

e RQl: What are the key build level metrics
that significantly contribute to the
evaluation of build performance?
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e GitHub projects
analysis

e Focus on GitHub
Actions as CI tool.
(Travis CI - extensively
studied) [4]

e Gap: Isolation study of

Methodology

&

Repository Selection

e Non-Dummy Projects
e Workflow Filtering

Metric Selection

Java Gradile Build and
Test Workflow
Template [5]

name: Java CI
on: [push]

jobs:
build:
runs—-on: ubuntu-latest

steps:
— uses: actions/checkout@v3
— name: Set up JDK 17
uses: actions/setup-java@v3
with:
java-version: '17'
distribution: 'temurin'
— name: Build with Maven
run: mvn ——batch-mode —-update-snapshots package

Workflows Performance Clustering
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@ Median Duration: 8.89 minutes
——- Median Breakage Rate: 0.18
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e Limited # repositories studied.

e Possibility of bias in repository selection.

e Looking at restricted history of builds.

* Workflow filtering.

* Observations based on cluster properties.

e New CI tools, like GitHub Actions, show similar patterns in terms of
best practices to already studied CI technologies.

e Build Level Metrics: Job Churn, Caching, Fail-Fast configurations,
Skipping usage, show clear relation to build performance.

e Project Metrics: maturity and project context, strong pre-requisites
heeded for a holistic understanding of performance
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