Exploring Descriptive Metrics of Build Performance

A Study of GitHub Actions in Continuous
Integration Projects

%
TU Delft

Author

Radu Stefan Constantinescu
Contact: Constantinescu-3@tudelft.nl

Responsible Professor

Sebastian Proksch

Supervisor
Shujun Huang

o) Introduction 02

e Continuous Integration (CI)
o practice in software development, widely
recognised and adopted
o involves frequent merging into central
repository [1].
o Cl implementation != "one size fits all
solution” <- constraints and contexts.
 Performance of Cl Build Stage
o "heart of software development ecosystem”

Resedarch Question

What are the most descriptive metrics
for identifying build performance?

e RQl: What are the key build level metrics
that significantly contribute to the
evaluation of build performance?

03

e GitHub projects
analysis

e Focus on GitHub
Actions as CI tool.
(Travis CI - extensively
studied) [4]

e Gap: Isolation study of

Methodology

&

Repository Selection

e Non-Dummy Projects
e Workflow Filtering

Metric Selection

Java Gradile Build and
Test Workflow
Template [5]

name: Java CI
on: [push]

jobs:
build:
runs—-on: ubuntu-latest

steps:
— uses: actions/checkout@v3
— name: Set up JDK 17
uses: actions/setup-java@v3
with:
java-version: '17'
distribution: 'temurin'
— name: Build with Maven
run: mvn ——batch-mode —-update-snapshots package

Workflows Performance Clustering

2
(=]

@ Median Duration: 8.89 minutes
——- Median Breakage Rate: 0.18

2
Ln

[2] * RQ2: What are the essential project level performance aspects + Build-Level Metrics (caching, fail- 8 S ﬂ
. . o . fast, retrial) Q- o :
e Github Actions - Compelling Dev Option [3] metrics that plqy a SlgnIfICCInt role in the [4] * Project-Level Metrics (maturity, %03 i ¢ 0
> flexibility assessment of build performance? * Performance metrics: sty repuaton) = 1R ‘:
o robustness build breakdge & build . %0'2 R T S B e B
. = " 0o 1
o tight GitHub integration duration LT R s
oo i
: i lﬁﬂedian Dura]’fion {minute;;n ” ”
Table 3: Build-Level Metrics on different branches Retrying fq"ed bU"dS wonlt fix them StrOng Performqnce indicqtorS:
04 ReSUItS PrinCiple: “If it's not Quadrant branch | breakage rate resnluthqn time | consecutive fails | job churn | run CDLI)HI Auerage Breskage Rate by Quactant and un Auemet__ CGChinga Fq"_FGSta Skipping
1y go . egm type mean median mean mean mean -
broken don't fix it igig g::ﬁg;s g?: 370{;[} gig OUU?}O 3]62{}21 o i - Table 6: Fail-fast (FF) and No Cache and Skip Usage in Per-
LBHD | main | 0.06 13539 0.92 -0.00 23544 g formance Clusters
. LBHD Dth_ers, 0.12 0.00 0.48 0.06 11.00 fE Fa Fasi Cache Skip
. Keep the mtqm C'tehqn’ HBLD | others | 0.1 76 100 00l | 1143 N 24" | Disabled % | Disabled % | Usage %
HBHD i 0.33 219.98 13.91 0.00 235.64 < - 170 <0770 2. J070
e experiment oh other HBHD | others | 0.34 31.78 1.06 0.27 10.38 . . - - E%EB ?622% E)Z{jgg% 35{533%
oYo branches oo | IS C— HBHD | 2647% | 1471% | 2.94%
O
- - Cl Build Activity - Project . . . : :
GltHUb ACtlonS context depyendenjt Keep conflgurqtlon Slmple, Keeplng teqm SIze IOW qnd Normalized Parallel Coordinates Plot for Project Level Mletrics
solve failures fast having a small project, — oo
Heatmap of Dominant Activity Day of the Week / Quadrant prqctices of good performq nce [o
. Table 4: Stats of # Jobs Configured / Workflow N Adopt Cl best practices - Py
wednesday - fast, before it's too late
Quadrant | Average | Median | p80 | p95 P99
o LBLD | 1.50 1.00 2.00 | 3.55 | 5.42 |
LBHD 1.94 1.00 200 | 5.00 | 74 Maturity: Influence of 0. /T~
ey HBLD 1.08 1.00 1.00 | 1.45 1.89 > Build Performance N \
HBHD 6.91 3.50 9.00 | 18.05 | 29.03 . \ <
LBLD LBHD HBHD HBLD -:;f:}‘f‘f“‘m-“lE ranc? ° re‘teae'es tﬂb“-‘mrs saf fork> s\z€ - nont?
Ouadrant - age_}n -
o o [] ° 07
05 » Limitations 06 » Conclusions References

e Limited # repositories studied.

e Possibility of bias in repository selection.

e Looking at restricted history of builds.

* Workflow filtering.

* Observations based on cluster properties.

e New CI tools, like GitHub Actions, show similar patterns in terms of
best practices to already studied CI technologies.

e Build Level Metrics: Job Churn, Caching, Fail-Fast configurations,
Skipping usage, show clear relation to build performance.

e Project Metrics: maturity and project context, strong pre-requisites
heeded for a holistic understanding of performance

[1] Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A Ernst, and Margaret-Anne Storey. Uncovering the benefits and challenges of continuous
integration practices. IEEE Transactions on Software Engineering, 48(7):2570-2583, 2021.
[2] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Yasutaka Kamei, and Ahmed E Hassan. An empirical study of build maintenance effort. In

Proceedings of the
33rd international conference on software engineering, pages 141-150, 2011

Transactions on Software Engineering, pages 1-21, 11 2022

gradle#using-the-gradle-starter-workflow, 2023. Accessed June 21, 2023

| 3]Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. On the use of github actions in software development repositories. In
2022 IEEE International Conference on Software Maintenance andEvolution (ICSME), pages 235-245, 2022.
4] Taher Ghaleb, Safwat Hassan, and Ying Zou. Studying the interplay between the durations and breakages of continuous integration builds. IEEE

5] Github. Build and test java with gradle. https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-

