Communicating trust-based beliefs and decisions in human-Al teams using real-time visual explanations

Supervisor: Carolina Centeio Jorge

Author: Elena Dumitrescu (E.I.Dumitrescu-1@student.tudelft.nl)

1. INTRODUCTION

Human-AI teams need **mutual trust** to collaborate effectively:

- **natural trust** = human's trust in AI agent
- artificial trust = AI agent's trust in human

Artificial trust: perceive human characteristics and assess whether they are a cue for trustworthiness \Rightarrow **mental model** of the human Knowledge gap: Little empirical research and implementations of artificial trust models

Communication: necessary to establish natural trust. The type (e.g. visual/textual) impacts team trust and performance [1].

Knowledge gap:

- No studies on the advantages communicating artificial trust
- Little focus on the different types of communication human-Al teams can incorporate [1]

2. RESEARCH QUESTION

How do real-time visual explanations of the mental model of the Al agent's trust in its human teammate affect the human's **trust** in the Al agent and overall satisfaction?

Figure 1. Environment. Top left shows the initial map configuration. Top right shows the chat area. Bottom presents a zoomed image of the trust graphs (for TE group only).

3. ARTIFICIAL TRUST PROCESS

Evaluation: Al adjusts (Δ) its beliefs (*B*) about human competence and willingness (ϕ) on task $t \in D$, based on behaviour cues (n)

$$\begin{cases} B_n(\phi(H,D)) = B_{n-1}(\phi(H,D)) + \Delta(t) + P(t) \\ B_0(\phi(H,D)) = 0 \end{cases}$$
(1)

Decision: after trust evaluation, decide (τ) whether to trust the human \Rightarrow possibly **adapt behaviour** based on decision

$$au_n(t) = B_n(competent(H,D)) \geq T_c \wedge B_n(willing(H,D)) \geq T_w$$

Context: integrated in both evaluation and decision, e.g. how preferable is a task (P)

4. METHOD

Between-subject **experiment** with 46 participants, comparing trust explanations group (TE) against baseline. Human and AI collaborate to save 6 victims in a **search and rescue** task (Figure 1)

Communication: on every trust/behaviour update

- Time-based plot aggregated trust value over time, explanations for each data point.
- Beliefs bar chart AI agent's beliefs

Preference integration: heuristic-based

- flooded areas (longer to navigate)
- special victims (longer to rescue)
- **Q** distance (human prefers closer tasks)

Subjective measures: self-reported trust and satisfaction, measured with Likert scale questionnaires

Objective measures: communication rate, level of interaction with robot, mouse movements, focus on trust plots, compliance

5. RESULTS - STATISTICAL TESTS

H1/H2 Incorporating real-time visual explanations of the AI agent's trust in its human teammate increases natural trust/overall satisfaction.

Pearson's correlations between subjective and objective measures (Table 1)

Comparison tests between dependent variables across the two conditions (Table 2). Parametric assumptions verified beforehand.

Mouse movements heatmap aggregated for all participants in the TE group (Figure 2) $\alpha = 0.05$

Table 1. Pearson's cor Com SR Satisfaction

SR Trust

Table 2. Comparison test results for assessing differences across the two conditions						
Metric	Statistical Test	P-value	Condition	Mean (μ)	SD (σ)	
SR Trust	Independent Samples	< 0.001*	TE	4.261	0.31^{\diamond}	
	Welch's T-test	< 0.001	Baseline	3.511	0.624^{\diamond}	
R Satisfaction	Independent Samples	0.002*	TE	4.344	0.41°	
	Welch's T-test	0.002	Baseline	3.688	0.873°	
ommunication	Mann-Whitney	0.011*	TE	0.049	0.011	
rate	U test	0.011	$\operatorname{Baseline}^\dagger$	0.042	0.014	
Compliance	Mann-Whitney	0.216	TE^{\dagger}	2.864	1.66	
	U test	0.210	Baseline	3.09	1.311	

Metric	Statistical Test	P-value	Condition	Mean (μ)	SD (σ)
SR Trust	Independent Samples	< 0.001*	TE	4.261	0.31^{\diamond}
	Welch's T-test	< 0.001	Baseline	3.511	0.624^{\diamond}
R Satisfaction	Independent Samples	0.002*	TE	4.344	0.41^{\diamond}
	Welch's T-test	0.002	Baseline	3.688	0.873^{\diamond}
Communication	Mann-Whitney	0.011*	TE	0.049	0.011
rate	U test	0.011	$Baseline^{\dagger}$	0.042	0.014
Compliance	Mann-Whitney	0.216	TE^{\dagger}	2.864	1.66
	U test	0.210	Baseline	3.09	1.311

Statistically significant at p < 0.05 level (green).

(2)

[†] Non-normality (orange). [♦] Heteroscedasticity (yellow).

6. DISCUSSION

Self-reported trust: including real-time visual explanations increases trust, supporting H1

Self-reported satisfaction: including real-time visual explanations increases satisfaction, supporting H2

Communication rate: positively correlated with satisfaction and higher for the TE group, *supporting H2*

Compliance: negatively correlated with satisfaction \Rightarrow measure of perceived task difficulty, as it also shows dependence on AI

information overload

Future work:

Responsible professor: Myrthe Tielman

relations between self-reported measures and objective metrics							
munication Rate	Level of Interaction	Focus	Compliance				
0.34^{*}	-0.287	0.095	-0.423*				
0.247	-0.113	0.182	-0.088				

Statistically significant at p < 0.05 level (green).

Table 2. Comparison test results for accessing differences across the two condition

Figure 2. Heatmap of the aggregated mouse movements in the TE group

Mouse movements heatmap shows general interest in hovering functionality, however participants' opinions also reveal potential

Limitations: hardware inconsistencies, homogeneity of participants

• compare different trust communication types, including hybrid • explore more metrics for trust and satisfaction • generally focus on empirical research for artificial trust