TUDelft

ENHANCING SOCIAL INTERACTIONS WITH AI-POWERED SYSTEMS

Nils Achy

1. INTRODUCTION

- Al-powered systems like chatbots, robots, and home assistants becoming increasingly popular.
- Conversations with these systems do not provide the same social interaction experience.
- Disparity caused by the absence of voice nuances, strict language use, and limited adaptation.
- Inability to recognize when someone in a group discussion wants to contribute.
- If robots and conversational agents could detect this behavior, they could create a more engaging environment for discussion. Ex: serve as mediators to ensure that everyone has the opportunity to express their thoughts (information gain).

2. RELATED WORK

- Previous work by Litian Li et al. [1] aims to infer instances of speaking intentions by training a model on accelerometer data using fixed window sizes.
- Does not provide a comprehensive understanding of the underlying structure of these intentions.
- When does the intention truly start?

[]] Jing Zhou Litian Li, Jord Molhoek. Inferring intentions to speak using accelerometer data in-the-wild, 2023. Unpublished.

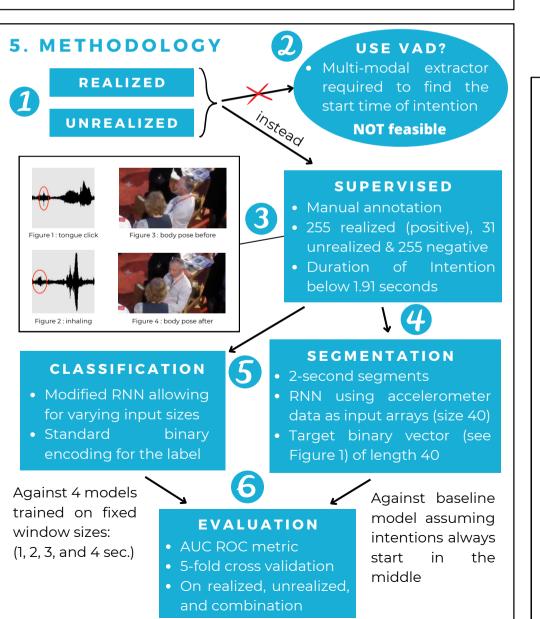
3. CONTRIBUTION

- Infer segments (finding the start and end time) of speaking intentions (segmentation) on the same dataset using data captured by a body-worn accelerometer as input data to the model.
- Infer instances of speaking intentions (classification) using varying segment sizes of accelerometer data instead of fixed window sizes and compare with [1].

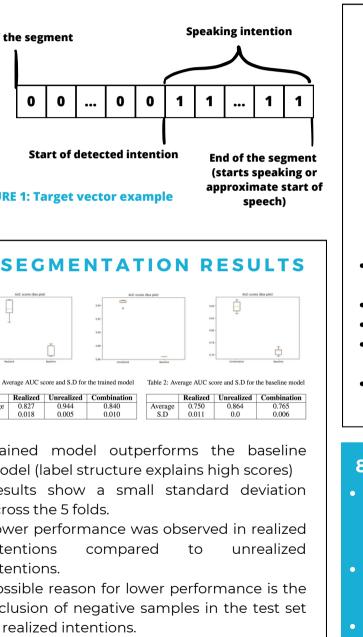
How can body language, captured by a body-worn accelerometer, be utilized to estimate segments of speaking intentions in time, and does a supervised learning process improve the performance of detecting such cases?

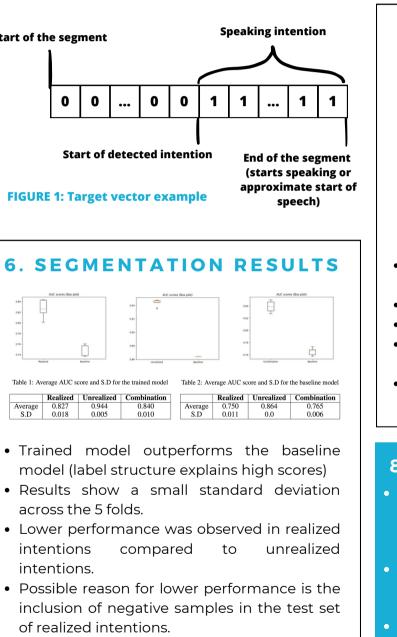
4. EXPERIMENT

- REWIND dataset (business networking event) of in-the-wild data of conversational speech for 1.5h in Dutch language (limitation)
- First half of the event participants engage on assigned topics, the second half in free conversation
- 13 people visible on camera during the 10-minute extract (1:00:00 to 1:10:00) wearing an audio recorder and accelerometer device



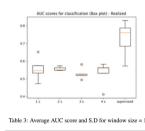
Start of the segment

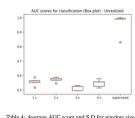


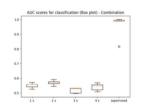


- Model may have reduced accuracy when dealing with negative samples, leading to a higher rate of false positives.
- Model tends to overestimate the occurrence of speaking intentions.
- Despite overestimation, the model still performs better than the baseline.

7. CLASSIFICATION RESULTS







	Realized	Unrealized	Combination
Average	0.528	0.514	0.518
S.D	0.032	0.017	0.018

RealizedAverage0.529S.D0.068
 Unrealized
 Combination

 0.545
 0.541

 0.026
 0.025

Average S.D

	Realized	Unrealized	Combination
Average	0.727	0.963	0.960
S.D	0.10	0.074	0.080

- Supervised model outperforms models with fixed window sizes in all three evaluation criteria and in all 4 window sizes.
- Results show consistency and low standard deviation.
- Supervised learning provides benefits in intention inference.
- Alignment with findings from [1] for unrealized intentions (2second window size yields the most promising outcomes).
- Misalignment with findings from [1] for realized intentions (2second window size in the present research, 1-second for [1]).

8. CONCLUSION & LIMITATIONS

- Model trained on accelerometer data demonstrates effective segmentation capability within the 2-second segment. Performs better on positive instances but achieves higher AUC scores on all 3 criteria compared to the baseline model with low standard deviation.
- Supervised learning brings significant improvement to the classification task; suggesting that gualitative data can play a role in building more realistic estimators for inferring speaking intentions.
- Potential future work includes the use of a larger dataset, incorporating data from more languages, and employing a rulebased approach to build a multi-modal extractor (to use a VAD)
- Manual annotations of speaking intentions are subjective, recommending multiple individuals for accuracy and reliability
- Fine-tuning the model and assessing performance using different metrics are important considerations.
- Exploring these ideas can lead to advancements in our ability to infer speaking intentions and improve Human-Computer interactions.