Recommender systems via Covariance Neural Networks
Using precision matrices as Graph Collaborative Filter

Vic Vansteelant

Supervisors: Dr. Elvin Isufil, Andrea Cavallo, Chengen Liu

June 23, 2025

1 Introduction

* Recommender systems are everywhere and personalize
content by predicting user preferences for unseen items.

= This research focuses on collaborative filtering, which uses
past interactions from users to predict unknown ratings.

= Graph Neural Networks (GNNs) learn node embeddings by
aggregating neighborhood features, making them effective for
capturing relational patterns between users.

= coVariance Neural Networks (VNNs) use covariance matrices
as graph structures to encode statistical dependencies [3].

= We adapt on this by using the precision matrix, which is the
inverse of the covariance matrix, instead. This tries to capture
conditional independence between users.

= Limited research into using these techniques for movie
recommendation. This research addresses this gap.

2 Methodology

= Model input:
= A leave-one-out strategy is used for the training procedure.
= Mini-batching is used to improve efficiency while retaining
learning precision.
= The entire rating matrix is fed into the model, which predicts
all ratings and is then compared to the test ratings.

= Model Architecture:

= Built on the GNN framework from Sihag et al. [3].
= Composed of multiple GNN layers followed by a multilayer

perceptron (MLP), which reduces the data to a scalar rating.

= Each GNN layer aggregates multi-hop neighborhood
features using the precision matrix.
= Graph Construction:
= A regularized covariance matrix is computed from the
normalized training data. This matrix is then inverted to get
the precision matrix.
= This precision matrix is used as the Graph Shift Operator

(GSO) in the GNN.
HO+T) — 0(2,’:& AkH(I)WI((/))

Delft
e t University of
Technology

3 Experimental Setup

Evaluation Metric
= Mean Absolute Error (MAE): Easier for humans to interpret, so
used for early experimenting and plotting losses.

= Root Mean Squared Error (RMSE): Standard benchmark
metric which will be used for reporting results.

Dataset & Preprocessing
= Dataset: MovieLens-100k, which has ratings for unique
user-movie pairs ranging between 1 and 5.
= Split: 80% train, 10% val, 10% test (fixed seeding).
* Normalization: User-wise z-score normalization.
zz7 1
* Precision Matrix: P = (— + el) , C=max(MMT, 2)

Hyperparameters
Tuned by grid search via ParameterGrid (scikit-learn).

dimNodeSignals: [1,32, 64]
nFilterTaps: [4,4]
dimLayersMLP: [64, 32,16, 1]

Learning rate: 0.002
Batch size: 256
Loss function: MSE

4 Results and Discussion

Evaluated on MovieLens-100k with standard 80/20 train-test split.

Model RMSE | Ref
MC (2009) 0.973 |[1]
GMC (2014) 0.996 |[2]

GHRS (2022) 0.887 | [4]
MORGH (2022) | 0.881 | [5]
VNN (this work) | 0.9496 | —

Table: Benchmark results on MovieLens-100k (lower RMSE is better)

= The RMSE of 0.95 shows the ability to learn meaningful
patterns from user-item pairs and ratings.

= Baselines: mean prediction ~1.2 RMSE; user-mean ~1.1 RMSE.

= Although not outperforming state-of-the-art(GHRS, MoRGH),
VNN beats classical benchmarks (MC, GMC).

Prediction Deviation Analysis
= Errors analyzed by rounding predictions to nearest integer.
= Distribution of deviations (A = predicted rating - true rating):

Exact match (A = 0): 46.5%
Off by 1 rating: 41.8%

Off by 2 ratings: 9.7%
Off by 3 or more: 2.0%

= Heatmap (Fig. 1) shows systematic biases:

= Bias towards mean rating (around 3/4).
= Almost never predicts low ratings (1/2).
= Detects trends but struggles with extreme values.

Predicted vs True rating counts 1.0

0.8

=4
=3}

Normalised

Predicted rating
=]
e

F0.2

1 68 14 11 5] 0

1 2 3 4 5 —- 0.0
True rating

Figure: Heatmap of true vs. predicted ratings

5 Future Work

= Output calibration: Post-processing to calibrate the output
distribution to better predict extreme ratings.

= Larger datasets: Test on datasets like MovieLens 1M or 10M
for scalability, generalization, and robustness.

= Sparsification: Explore matrix sparsification to reduce
computation while preserving structure.

References

[11 E.J.Candes and B. Recht. “Exact Matrix Completion via Convex Optimization”. In: (2008).

[2] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. “Matrix Completion on Graphs”. In: (2014).

[3] S.Sihag, G. Mateos, C. McMillan, and A. Ribeiro. “Covariance Neural Networks”. In: Advances in Neural
Information Processing Systems 35 (2022), pp. 17003-17016.

[4] 7. Zamanzadeh Darban and M. H. Valipour. “GHRS: Graph-based hybrid recommendation system with
application to movie recommendation”. In: Expert Systems with Applications (2022).

[5] S.Ziaee, H. Rahmani, and M. Nazari. “MoRGH: Movie Recommender System using GNNs on
Heterogeneous Graphs”. In: (2024).po1: 10.21203/rs.3.rs-3860094/v1.

https://doi.org/10.21203/rs.3.rs-3860094/v1

	Introduction
	Methodology
	Experimental Setup
	Evaluation Metric
	Dataset & Preprocessing
	Hyperparameters

	Results and Discussion
	Prediction Deviation Analysis

	Future Work
	References

