Recommender systems via Covariance Neural Networks

Using precision matrices as Graph Collaborative Filter

Vic Vansteelant Supervisors: Dr. Elvin Isufi, Andrea Cavallo, Chengen Liu

June 23, 2025

1 Introduction

- Recommender systems are everywhere and personalize content by predicting user preferences for unseen items.
- This research focuses on collaborative filtering, which uses past interactions from users to predict unknown ratings.
- Graph Neural Networks (GNNs) learn node embeddings by aggregating neighborhood features, making them effective for capturing relational patterns between users.
- coVariance Neural Networks (VNNs) use covariance matrices as graph structures to encode statistical dependencies [3].
- We adapt on this by using the **precision matrix**, which is the inverse of the covariance matrix, instead. This tries to capture conditional independence between users.
- Limited research into using these techniques for movie recommendation. This research addresses this gap.

2 Methodology

Model input:

- A leave-one-out strategy is used for the training procedure.
- Mini-batching is used to improve efficiency while retaining learning precision.
- The entire rating matrix is fed into the model, which predicts all ratings and is then compared to the test ratings.

Model Architecture:

- Built on the GNN framework from Sihag et al. [3].
- Composed of multiple GNN layers followed by a multilayer perceptron (MLP), which reduces the data to a scalar rating.
- Each GNN layer aggregates multi-hop neighborhood features using the precision matrix.

Graph Construction:

- A regularized covariance matrix is computed from the normalized training data. This matrix is then inverted to get the precision matrix.
- This precision matrix is used as the Graph Shift Operator (GSO) in the GNN

$$H^{(l+1)} = \sigma \left(\sum_{k=0}^{K-1} \tilde{A}^k H^{(l)} W_k^{(l)} \right)$$
FUDelft Delft University of Technology

3 Experimental Setup

Evaluation Metric

- Mean Absolute Error (MAE): Easier for humans to interpret, so used for early experimenting and plotting losses.
- Root Mean Squared Error (RMSE): Standard benchmark metric which will be used for reporting results.

Dataset & Preprocessing

- Dataset: MovieLens-100k, which has ratings for unique user-movie pairs ranging between 1 and 5.
- Split: 80% train, 10% val, 10% test (fixed seeding).
- Normalization: User-wise z-score normalization.

Precision Matrix:
$$P = \left(\frac{ZZ^{\mathsf{T}}}{C-1} + \epsilon I\right)^{-1}, \quad C = \max(MM^{\mathsf{T}}, 2)$$

Hyperparameters

Tuned by grid search via ParameterGrid (scikit-learn).

Learning rate: 0.002	
Batch size: 256	
Loss function: MSE	

dimNodeSignals: [1, 32, 64] nFilterTaps: [4, 4] dimLayersMLP: [64, 32, 16, 1]

4 Results and Discussion

Evaluated on MovieLens-100k with standard 80/20 train-test split.

Model	RMSE	Ref
MC (2009)	0.973	[1]
GMC (2014)	0.996	[2]
GHRS (2022)	0.887	[4]
MoRGH (2022)	0.881	[5]
VNN (this work)	0.9496	—

Table: Benchmark results on MovieLens-100k (lower RMSE is better)

- The RMSE of 0.95 shows the ability to learn meaningful patterns from user-item pairs and ratings.
- Baselines: mean prediction ~1.2 RMSE; user-mean ~1.1 RMSE.
- Although not outperforming state-of-the-art(GHRS, MoRGH), VNN beats classical benchmarks (MC, GMC).

Prediction Deviation Analysis

Off by 1 rating: 41.8%

- Almost never predicts low ratings (1/2).

Figure: Heatmap of true vs. predicted ratings

5 Future Work

References

- [3]
- [4]
- [5]

 Errors analyzed by rounding predictions to nearest integer. • Distribution of deviations (Δ = predicted rating - true rating):

Exact match ($\Delta = 0$): 46.5% Off by 2 ratings: 9.7% Off by 3 or more: 2.0%

Heatmap (Fig. 1) shows systematic biases:

Bias towards mean rating (around 3/4).

Detects trends but struggles with extreme values.

• **Output calibration:** Post-processing to calibrate the output distribution to better predict extreme ratings.

Larger datasets: Test on datasets like MovieLens 1M or 10M for scalability, generalization, and robustness.

• **Sparsification:** Explore matrix sparsification to reduce computation while preserving structure.

E. J. Candes and B. Recht. "Exact Matrix Completion via Convex Optimization". In: (2008) V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. "Matrix Completion on Graphs". In: (2014). S. Sihag, G. Mateos, C. McMillan, and A. Ribeiro. "Covariance Neural Networks". In: Advances in Neural ation Processing Systems 35 (2022), pp. 17003-17016

Z. Zamanzadeh Darban and M. H. Valipour. "GHRS: Graph-based hybrid recommendation system with application to movie recommendation". In: Expert Systems with Applications (2022)

S. Ziaee, H. Rahmani, and M. Nazari. "MoRGH: Movie Recommender System using GNNs on Heterogeneous Graphs". In: (2024). DOI: 10.21203/rs.3.rs-3860094/v1.