Constructing and Evaluating Complex Event-based Datasets for Increasing Performance
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5. Conlcusion

2. Three resulting datasets, with
increasing amounts of noise:

e Superimposed-Noisy

e Centered-Filtered

Segmentation is a computer vision task,
where each pixel is labeled.

1. Results of T-Test p-values are smaller
than 0.007, indicating no relationships
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Would noisy datasets bring improvements
over the original event datasets for T allowed it to generalize better.

2000 -

Digit

Figure 3. Average amount of noise per digit for each generated dataset.

5. Best model per dataset is evaluateo
on the original N-MNIST test set multiple
times (cross evaluations).

simulating noisy, real-world environments
thereby increasing the performance of
segmentation Machine Learning
models’

4. Altering the background makes
predictions generalizabiliy decrease.
Altering the data (digits) => increase [3].

Future work: increase the variability of noise between the datasets,
vary time-windows of training data, evaluate using other models

6. Perform two-tailed, independent T-

e |Vhat is the optimal amount of noise that can be superimposed from

an existing event-based dataset over a different event-based dataset Test of all recorded metrics to determine
to gain an improvement in segmentation tasks? . S o o g i References:
if values are statistically significant. L . ‘ - . | | -
[1]1 G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image datasets to spiking neuromorphic datasets using saccades,” Frontiers in
e How does applying random noise over an existing event-based . L neuroscience, vol. 9, p. 437, 2015.
dataset affect Z—he performance Of /nstance Segmenz-az-/‘on moo’e/s? F/gure 4 (A) GrOund ZTUth Of d/g/z- 2 [2] A. Baltaretu, “EV-Mask-RCNN: Instance segmentation in event-based videos,” 2022.
(B) Segmeﬂmf/O/’) mGSk Cl/’)C/ C/OSS ,OI’QCI'ICT/O/’I [3] F. Gu, W. Sng, X. Hu, and F. Yu, "Eventdrop: data augmentation for event-based learning,” arXiv preprint arXiv:2106.05836, 2021

Alexandru-Dragos Manolache - a.d.manolache@student.tudelft.nl | Supervised by: Nergis Tomen, Ombretta Strafforello, Xin Liu CSE3000 — Research Project | June 22,2022




