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2. Question

3. Method 4. Results

Would noisy datasets bring improvements
over the original event datasets for
simulating noisy, real-world environments
thereby increasing the performance of
segmentation Machine Learning
models? 

low output bandwith 
low latency
high dynamic range

Event-based cameras output a stream of
events for each pixel.

They offer advantages:

Segmentation is a computer vision task,
where each pixel is labeled.

Consider constructing event-based 
 datasets with noisy background, by a
superimposition of two event datasets,
and by adding unifrom noise. 

What is the optimal amount of noise that can be superimposed from
an existing event-based dataset over a different event-based dataset
to gain an improvement in segmentation tasks? 

How does applying random noise over an existing event-based
dataset affect the performance of instance segmentation models?

Constructing noisy event-based datasets
and evaluating them on an instance

segmentation model.

Superimposed-Noisy
Centered-Filtered
Uniform-Noisy

2. Three resulting datasets, with
increasing amounts of noise:

1. Two datasets superimposed: N-MNIST
and N-Caltech101 [1]. Figure 1. Sample of each digit from Centered-Filtered dataset .

Figure 2. Sample of each digit from Uniform-Noisy dataset.

3. Instance segmentation model
used:  EV-Mask-RCNN [2].

4. Three instances of the model are
trained on each of the four datasets,
resulting a total of 12 trained models. 

5. Best model per dataset is evaluated
on the original N-MNIST test set multiple
times (cross evaluations).

6. Perform two-tailed, independent T-
Test of all recorded metrics to determine
if values are statistically significant.

Figure 3. Average amount of noise per digit for each generated dataset. 
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Figure 4. (A) Ground truth of digit 2. 
(B) Segmentation mask and class prediction. 

Figure 5. Results of training on noisy datasets and testing on N-MNIST test set .
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1. Results of T-Test p-values are smaller
than 0.001, indicating no relationships
between the sets of data.

2. Models trained on noisy datasets
perform noticeably worse on a dataset
with no noise, than a model trained directly
on the no-noise dataset.

3. Uniform-Noisy has more events than
Centered-Filtered, but performed best in
cross evaluations - uniformity of noise
allowed it to generalize better.

4. Altering the background makes
predictions generalizabiliy decrease.
Altering the data (digits) => increase [3].
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Future work: increase the variability of noise between the datasets,
vary time-windows of training data, evaluate using other models


