The SMICT algorithm for enhancing fairness in Dynamic Datasets

Research Project under the topic of Dynamic Algorithmic Fairness. Bogdan Badale - <B.Badale@student.tudelft.nl>

1 - Introduction

Background

- The increasing need for fairness-aware programming [1]
- SMOTE used to increase fairness [2]

Research Gap

- Work mainly focused on detection of unfairness rather than dynamic correction.
- Very little research on SMOTE for dynamic fairness, and even less for it's variants.

Proposed Solution - SMICT - Synthetic MInority Crosssampling Technique

• SMOTE supplemented by samples from other classes.

Research Question: Can SMICT be used to increase fairness in dynamic datasets?

2 - What is SMOTE?

Synthetic Minority Oversampling Technique [4]

- Frequently used alongside Machine Learning algorithms to increase the accuracy of predictions for a minority class.
- Creates **Synthetic data points** between existing data points rather than adding weights or duplicating data.
- Nearest Neighbors For every element in the minority class, distances to every other element are calculated. Synthetic samples are generated between neighboring points

3 - Methodology

- Implement SMOTE and SMICT for the chosen "Folktables" dataset [3].
- Train simple Logistic Regression Algorithm on the modified data.
- **Test** on Unmodified Data.
- **Compare** Performance and Fairness evaluation: Accuracy, Equal Opportunity, Demographic Parity
- **Evaluate** the performance of SMICT compared to SMOTE and the no-modification baseline.

4 - The SMICT algorithm

Synthetic Minority Cross-Sampling Technique

- Oversamples Minority class by interpolating features with those of members of all other classes. Cross-Samples are less Prone to underrepresentation bias in the minority class.
- Increased focus on **Fairness**, minority class features become more similar to those of majority classes.
- **Dynamic** Unlike SMOTE, SMICT uses random choice rather than Nearest Neighbors, significantly reducing the runtime.

Ideal Datasets for SMICT:

• SMICT, in theory, performs best when the **True Distributions** of classes can be assumed to have at least some **overlap** (Figure 1)

Figure 1: A visualization of SMICT for a dataset with heavy overlapping true

6 - Conclusions

Research Question

- SMICT can be used to increase fairness, as shown in the experiments.
- Accuracy of SMICT as well as performance is dependent on the underlying distribution of the data. (In this case accuracy was lowered)
- Runtime cost is minimal, allowing it to run in a dynamic setting. Future Work

• Improvements upon SMICT, more evaluation on more varied datasets. Analysis of the variance of SMICT.

• SMICT could be a start towards more research on active dynamic fairness balancing measures. As well as other ideas for transferring static Machine learning balancing solutions to a dynamic fairness context. (Such as Tomek links for example)

5 - Experimentation and Results

- Metrics Used Calculated from a confusion Matrix (Figure 2):
- Accuracy: (TP + TN) / (TP + FP + TN + FN)
- Equality Of Opportunity: Equalized True Positive Rate (TP/ TP+FN)
- Demographic Parity: Equalized Positive Prediction Rate ((TP+FP) / (TP+FP+TN+FN))
- EQ.Opportunity and Dem Parity are measured as error rates. The lower the better.

was employed at the time. This data contained 9 classes with 16 features each.

- Baseline Average (No Oversampling)
- Accuracy: 0.76958
- MSE EQ-Opp: 0.0347
- MSE Dem Parity: 0.017

The logistic regression algorithm was used on data first. All following data displays the differ baseline average

• Average Accuracy Increase

• SMOTE: -0.00103 (0.1% lower accuracy SMICT: -0.0058 (0.6% lower accuracy)

For this dataset, applying both SMICT and SM in marginally lower accuracy.

- Average Time Taken (Seconds)
 - SMOTE: 107.71888
 - SMICT: 0.543988
 - Highest difference: 2197.518

When running the experiments, SMOTE ended up being the main bottleneck, particularly for the larger data subsets.

References

[1] Albarghouthi, A., Vinitsky, S., University of Wisconsin–Madison, & University of Wisconsin-Madison. (2019). Fairness-Aware programming. In Conference on Fairness, Accountability, and Transparency (p. 9) [Conference-proceeding]. https://pages.cs.wisc.edu/~aws/papers/fat19.pdf [2] Lucentia, & De Alicante Departamento De Lenguajes Y Sistemas Informáticos, U. (2022, April 25). A Methodology based on Rebalancing Techniques to measure and improve Fairness in Artificial Intelligence algorithms. https://rua.ua.es/dspace/handle/10045/123225 [3] Ding, F., Hardt, M., Miller, J., & Schmidt, L. (2021, August 10). Retiring Adult: New datasets for fair machine Learning. arXiv.org. https://arxiv.org/abs/2108.04884 [4] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953

distributions and imbalanced class sizes.

TUDelft

Responsible Professor And Supervisor: Anna Lukina - <A.Lukina@tudelft.nl>

Predicted

Positive

(TP)

True Positive

False Positive True Negative (FP) (TN)

Figure 2: Confusion Matrix

Predicted

Negative

Negative (FN)

False

SMICT and SMOTE were run on 102 total data subsets from the Employment Dataset. This comprises US census data for the years 2017, 2018. - Labeled true/false based on whether a person

Actual

Positive

Actual

Negative

	 Average Dem Parity Error Increase SMOTE: 0.00048 (Increased fairness error)
	• SMICT: -0.00051 (Decreased Fairness error
	Again, SMICT outperformed SMOTE on average, with a
unmodified	lower Demographic Parity error
rence to the	
	 Average EQ Opportunity Error Increase
	• SMOTE: 0.00040 (Increased fairness error)
7)	• SMICT: -0.00160 (Decreased fairness error)
	SMICT performed better than SMOTE and overall on
OTE resulted	average, increased Equality of Opportunity fairness.

Analysis - For this dataset, SMICT, on average performed worse for accuracy, but better for Equality of Opportunity and Demographic Parity than SMOTE. It also did this a lot faster.

- Notably, this is an average. SMICT has also increased accuracy in 39/102 instances. In 11/102 data subsets, SMICT outperformed SMOTE in ALL categories.
- Accuracy, EQOpportunity, and Dem Parity performance can differ from dataset to dataset, based on the underlying distribution