
400 600 800

A blockchain to facilitate efficient cross-border transactions

Genetic Operators in Delay-Based Testing of the XRPL Consensus Algorithm
Wishaal Kanhai

Annibale Panichella, Mitchell Olsthoorn, Burcu Kulahcioglu Ozkan
| Author
| Supervisors

$460.831.398.702
XRP Trading volume (Dec 2024)

Potential bugs in XRPL could result in frozen funds or the validation of invalid transactions

The XRPL Consensus Algorithm
XRPL uses trusted validators to agree on a correct
set of transactions, even if some validators behave
maliciously. Every correct validator follows the steps
defined by the consensus algorithm.

It provides strong gaurantees in theory, in practice it
might contain implementation mistakes.

Initial generation
Generate random test cases and

execute them

Select fittest individuals
Based on a fitness function, select best
individuals to generate new test cases

New generation
Replace the worst test cases while keeping
the best, repeat the process until satisfied

Testing requires live network simulations, despite some success, it remains underexplored
We address this using evolutionary testing:

Evolutionary testing approaches use genetic operators (mutation & crossover) to generate new test cases:

Crossover-point

Mutation-point
Test case 1

Test case 2

Test case 3

Time (ms)
200 1000

Reordering message arrivals using delays

“How does the selection of genetic operators affect the performance of an evolutionary
approach for delay-based testing of the XRPL consensus algorithm?”RQ

May the Delays Be Ever in Your Favor

Delay

These reorderings can cause concurrency issues
Halted progress, network forks, etc.

Our test cases consist of delays to apply

Evolutionary approaches have been shown to be more effective than systematic testing in distributed systems

We inject a consensus bug and try to discover it!
Genetic operators differ in their degrees of exploration and exploitation, we compare the following:

Exploitative:
SBX Crossover
Polynomial Mutation

Additionally, we experiment with an unguided baseline which does not use any operators

Explorative:
Blend-α Crossover
Gaussian Mutation

Best performance: exploitation with subtle
exploration

Worst performance: heavily explorative
configurations

Baseline (random testing): strong
performance with high input diversity

Balanced strategies outperform extreme
ones. Diversity is valuable, but guided
refinement helps uncover clusters of bug-
prone inputs more effectively.

Trajectory of bug discoveries across generations

1

2

3

4

5

6

7

