ESTIMATING IMAGE DISTORTIONS FOR MIRROR ANAMORPHOSES USING SAMPLED POINT DISPLACEMENTS

GEES BROUWER - UNDER SUPERVISION OF ELMAR EISEMANN AND BARAN USTA

PROBLEM DESCRIPTION

- * Mirror anamorphosis: the distorted view of an artwork using a reflective object
- * The artwork is designed for the distorted view to form a recognizable image
- * It is difficult for artists to resolve the correct distortions while creating the artwork

GOAL

"Calculating mappings between artworks and their distorted view with minimum user assistance.

Q: Why? A: To enable artists to directly design the distorted view, while a computer resolves the correct distortions

Q: How? A: Using just two images and an interface

METHOD

- * An interface will be built in which a user can sample point displacements to create a partial mapping
- * An algorithm will be used for estimating the **full mapping**.
 - 4. ALGORITHMS
- * By calculating (regional) confidence values, the interface can guide the user to sample more point displacements

* The user will be able to improve the mapping by

iteratively reviewing results and sampling more points

	?	?	1
	٩	?	-
	2	?	1
	?	?	
	•	•?	1

The 3 levels: nearest neighbor vs. linear vs. cubic Curves: can we do better than cubic? => splines, radial basis function Confidence: what/how to compare? => image similarity & subdivision surface User errors: data fitting vs. data interpolation?

irregularities

=

CSE3000 | JUNE 29, 2021

ALGORITHMS

Interpolation: estimating values between known data points

... for two dimensions? ... for scattered data? => creating a polygonal surface

RESULTS

Nearest neighbor: unpractical

Linear: Best for planar mirrors

- **Cubic:** Best for (slightly) curved mirrors with irregularities
- **RBF interpolation:** Best for advances curvatures with small irregularities
- Splines: Best for advances curvatures with no irregularities
 - => The better at estimating advanced curvatures, the less flexible for
- **Data fitting** cannot properly distinguish between irregularities and user errors.
 - => User interface design & user responsibility
 - Sweet spot: Iteratively 'trying' multiple methods, choose result with highest confidence