Evaluating Optical Flow Estimation Models on Real-World Non-Rigid Motion

1: Introduction & Background Information

Optical Flow is the perceived motion of brightness patterns in an image. It can
occur from the motions of objects, viewers, or light sources around the object.
Optical Flow Estimation is the task of finding pixel translations between two
images. This transformation is represented as a dense vector field, where each
element of this field represents the pixel transformation between frames.

Estimating optical flow is a fundamental task in computer vision and has
applications in fields such as object or gesture tracking, autonomous driving,
view reconstruction, image segmentation, or surveillance.

Currently, OFEs are evaluated using synthetic datasets, which contain dense
vector fields only. There are currently no real-world datasets containing dense
vector fields. However, all practical applications of optical flow estimation occur
in real-world contexts. Thus, there is no benchmark to properly assess OFE
performance in real-world scenarios. Judging performance solely via
performance on synthetic data may not accurately reflect a model’s true
effectiveness on real-world data.

We seek to investigate the performance of optical flow models on real-world
motion. For this, we focus specifically on non-rigid motion, where an object in
motion does not retain its original shape. This occurs frequently in the real world
but is poorly represented in widely used optical flow datasets.

A taxonomy of non-rigid motion types is composed of Articulated, Quasi-rigid,
Homothetic, Isometric, Conformal, Elastic, and Fluid Motion, ordered by
increasing non-rigidity. We focus on Articulated, Homothetic, and Conformal
motion.

Articulated Motion is the most constrained form of motion of the taxonomy. It
occurs when two rigid objects are connected via one or multiple joints. Despite
the rigidity of each individual object, the motion of the joined object is relatively

non-rigid. Examples include limb movements, such as elbow or knee flexions.

Homothetic Motion occurs when an object uniformly scales while preserving
shape. In this, the distance between points scales uniformly, while angles and
proportions remain consistent. This type of motion is best described as an
expansion or contraction. Examples include the magnification or reduction of a
digital image, or the uniform inflation or deflation of a balloon.

Conformal Motion occurs when an object’s distances scale non-uniformly while
preserving internal angles. While a global object shape distortion can occur, the
object’s local geometry remains relatively similar. Examples include stretching
cloth with printed designs, or 3D shapes rotating on a 2D projected plane.

2: Research Question

How well do optical flow estimation models
perform on real-world non-rigid motion?

3: Methodology

OFEs vary in use cases. Model architectures are trained on various
datasets to ensure optimal model performance. To make the evaluation
more robust, we have chosen to use both RAFT and DPFlow
architectures. These architectures were chosen due to their consistent
model performance on Sintel and Spring datasets, which include
scenes containing non-rigid motion.

No annotated dataset of real-world motion exists. Thus, a new custom-
made dataset was created from filming various scenarios of non-rigid
motion. The dataset consists of 3 folders, one for each of the motion
classes. These folders each contain 2 scenes, where a scene is a video

containing an example of that type of non-rigid motion. From each
scene, 4 pairs of frames were extracted. Thus, we have 24 image pairs,
8 for each type of motion.

Our collected data then needed ground truth values to evaluate our
models against. To allow for manual annotation for the collected
dataset, a custom annotation tool was developed. It allows users to
load, navigate, and annotate video frames or image pairs. It exports
annotations into the KITTI2015 format. Annotating every pixel for all
twenty-four images is infeasible. Instead, sparsely annotating data was
considered. However, model performance on sparsely annotated data is
poorly documented. For this, we need to find a balance of model
performance and annotation density.

Table 1: Endpoint Errors of listed models evaluated across varying
annotated pixel counts for specified dataset subfolders

fish-1 flowers-2 | cloth-4
RAFT DPF | RAFT DPF | RAFT DPF
10 54 3.5 24 S5 0.61 0.55
20 7.3 8.5 2. 4 0.79 0.80
30 5.6 6.2 . : 0.75 0.74

40 438 53 . S0 070 070
50 438 53 . S | 0.68 0.69

Points

We determined that 40 mappings are optimal for manual annotation of
the dataset. This number remains manageable to annotate for all
images found in the dataset. Increasing the number of annotations to
50 did not result in any significant improvements in end-point error.
With this, we have a total of 960 annotated pixels across the entire
dataset, which we deem sufficient to generalize model performance.

Training a model was infeasible due to time and resource constraints,
so we instead chose to use pre-trained checkpoints for testing. For
both RAFT and DPFlow, we used a model checkpoint trained on the

SINTEL dataset. We evaluate the results of our dataset using the
standard evaluation metrics of the KITTI dataset: End Point Error (EPE)
and Fl-all score.
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4: Results

When evaluating the complete dataset, both models achieve End Point Error values below 3 pixels Fl-
all scores range between 12%and 16%. The largest performance gap is seen in Articulated motion,
where both EPE and Fl-all scores are significantly higher for both models. In contrast, both models
show comparable performance in Homothetic and Conformal motion. In all cases, DPFlow maintains a
slight advantage in both EPE and Fl-all scores.

Table 5: Endpoint Error and Fl-Scores for the full dataset

DPFlow
FI-All

31.60
2.50
2.19
12.10

RAFT |
EE  FI-All | EE

Articulated 4.75 36.25 | 3.90
Homothetic 1.65 2.81 1.05
Conformal 1.45 8.44 1.09
Full Set 2.62 15.83 | 2.01

Dataset

Table 2: Endpoint Error and FI-Scores for Articulated Motion Table 3: Endpoint Error and Fl-Scores for Homothetic Motion Table 4: Endpoint Error and Fl-Scores for Conformal Motion

=T . AFT b & AET 2
RAFT DPFlow Ssena RAFI DPFlow Siens RAFI DPFlow

EE  FI-All | EE  FI-All EE Fl-All | EE  Fl-All EE  FI-All | EE  FI-All
Fish 529 3375 | 457 27.50 Flowers 117 250 | 113 250 Cloth 116 500 | 1.09 250
Horses 421 3875 | 323  35.60 Buns 212 3.3 1097 250 Rubix 175 1186 | 1.09 1.8
Combined 4.75 36.25 | 390 31.60 Combined 1.65 2381 105 2.50 Combined 145 844 | 1.09 2.19
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5: Conclusions

While both RAFT & DPFlow demonstrated adequate optical flow estimation under these
established conditions, the variations in their performance across motion classes reveals
limitations in their generalizability to real-world settings. Both optical flow models performed
consistently with synthetic benchmarks for Homothetic and Conformal motion, but
performance declined when evaluating Articulated motion. Despite EPE values remaining
within the acceptable threshold, high Fl-all scores indicate a lack of consistency and
robustness required for many real-world applications.

The findings from this study highlight the importance of more varied datasets for evaluating
optical flow models. Though the selected models perform well on synthetic datasets, their
real-world performance indicate limitations not captured by synthetic data. Additionally, this
highlights the need for more comprehensive datasets consisting of real-world motion patterns.
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