The monad and examples from Haskell

A computer-checked library for Category Theory in Lean

Csanád Farkas
Supervisors: Benedikt Ahrens, Lucas Escot
Technical University of Delft

Introduction

- The aim of this project was to make a library for category theory

- We used a computer checked language
- this can check the corre

My question was to add the definition of the monad, and add examples from Haskell - The two examples are: Maybe, List

- This poster will give both the regular definitions as well as the corresponding code snippets.

A category \mathcal{C} is defined as the following

The first two of which are sometimes列ity into one unit law. $i d_{A}$ is the dentity arrow on object A.

Functor

ee full definition is as follows [1]:	categry)
- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between categories \mathcal{C} and \mathcal{D}.	(map_obj: $\mathcal{C} \rightarrow \mathcal{D}$) (map_hom : $\Pi\{X \mathrm{Y}: \mathcal{C}\}(f: \mathcal{C}$.hom X), D.hom (map_obj X) (map_obj Y))
- F maps each \mathcal{C}-object to a \mathcal{D}-object.	(id : $\forall(X: \mathcal{C})$, map_hom (C.id X) (map_obj X))
- F maps each \mathcal{C}-arrow to a \mathcal{D}-arrow. - It must follow the laws below:	(comp : $\forall\{x$ Y $z: \mathcal{C}\}(f: C$.hom X .hom Y Z),
$F\left(i d_{A}\right)=i d_{F(A)}$	
$F(g \circ f)=F(g) \circ F(f)$	aposition_functor $\{\mathcal{C} \mathcal{D} \mathcal{E}:$ category $\}$
- Two functors $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{D} \rightarrow \mathcal{E}$ can be composed into $G \cdot F: \mathcal{C} \rightarrow \mathcal{E}$	

Natural Transformatiion

Horizontal Composition

Natural Isomorphisms
While it may be easy to see from the definitions that:

$$
\begin{gathered}
F \cdot(G \cdot H)=(F \cdot G) \cdot H \\
I d \cdot F=F=F \cdot I d
\end{gathered}
$$

The type checker sees those as different types. To fix this we can show that there is a natural transformation from one side to the other, and the other way round. This transformation is then called a natural isomorphism. To prove they are a natural isomorphism we need to show that all assigned arrows in the transformation are isomorphisms. This is easy as the assigned arrows are
the identity arrow. the identity arrow.

References
[1] B. C. Pierce, "A taste of category theory for computer scientists,", Feb. 2011. DOI: 10.1184/ R1/6602756 . v1. [Online]. Available: https ://kilthub . cmu . edu / articles / journal contribution/A_taste_of_category_theory_for_computer_scientists/6602756.

