- The aim of this project was to make a library for category theory.
- We used a **computer checked language**
- this can check the correctness of proofs
- we chose to use Lean 3
- My question was to add the definition of the **monad**, and add **examples** from Haskell • The two examples are: *Maybe*, *List*
- This poster will give both the regular definitions as well as the corresponding code snippets.

Category

- A category C is defined as the following [1]
- A collection of objects, A, B, \ldots
- A collection of arrows, $f: A \to B$
- A composition operator between arrows:

$$f: A \to B, g: B \to C$$
$$g \circ f: A \to C$$

The composition must follow three laws:

$$f \circ id_A = f$$

$$id_B\circ f=f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

The first two of which are sometimes combined into one unit law. id_A is the identity arrow on object A.

The full definition is as follows [1]:

- A functor $F: \mathcal{C} \to \mathcal{D}$ between categories ${\mathcal C}$ and ${\mathcal D}$.
- F maps each C-object to a D-object.
- F maps each C-arrow to a D-arrow.
- It must follow the laws below:

$$F(id_A) = id_{F(A)}$$

$$F(g \circ f) = F(g) \circ F(f)$$

• Two functors $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{E}$ can be composed into $G \cdot F : \mathcal{C} \to \mathcal{E}$

a au ributes
(C $_0$: Sort u)
(hom : Π (X Y : C ₀), Sort
(id : Π (X : C_0), hom X X
(compose : $\Pi \{X Y Z : C_0\}$
(g : hom Y Z)
(f : hom X Y),
hom X Z
)
axioms
(left_id : \forall {X Y : C_0} (f :
compose f (id X) = f)
(right_id : \forall {X Y : C ₀ } (f :
compose (id Y) $f = f$)
$(assoc : \forall \{X Y Z W : C_0\}$
(f : hom X Y) (g : hom Y Z)
compose h (compose g f) =
compose (compose h g) f
)

1 structure category :=

Functor

1	structure	functor	(<i>C</i>	\mathcal{D}	:	catego

- 2 (map_obj : $\mathcal{C}
 ightarrow \mathcal{D}$) 3 (map_hom : Π {X Y : C} (f : C.hom X Y), 4 \mathcal{D} .hom (map_obj X) (map_obj Y))
- 5 (id : \forall (X : C), map_hom (C.id X) = D.id
- (map_obj X)) 6 (comp : \forall {X Y Z : C} (f : C.hom X Y) (g : C
- .hom Y Z), map_hom (C.compose g f) = $D.compose (map_hom)$
- g) (map_hom f))

9 def composition_functor { $C \ D \ E$: category} 10 (G : $\mathcal{D} \Rightarrow \mathcal{E}$) (F : $\mathcal{C} \Rightarrow \mathcal{D}$) : $\mathcal{C} \Rightarrow \mathcal{E}$:=

- 12 map_obj := λ X, G.map_obj (F.map_obj X),
- 13 map_hom := λ _ _ f, G.map_hom (F.map_hom f), id := begin intro, rw F.id, rw G.id, end,
- ¹⁵ comp := begin intros, rw F.comp, rw G.comp, end,

(F G : \mathcal{C} \Rightarrow \mathcal{D}) :=

(naturality_condition :

 $\forall \{X Y : C\} (f : C.hom X Y),$

з (lpha : П (X : \mathcal{C}) ,

Natural Transformatiion

16 }

Assume the functors F, G are from \mathcal{C} to \mathcal{D} . The transformation must for each C-object A assign a \mathcal{D} -arrow from F(A) to G(A), denoted α_A . To be natural, it must also:

> $\forall f: A \to B, (A, B \in \mathcal{C}) \Rightarrow$ $\alpha_B \circ F(f) = G(f) \circ \alpha_A$

Natural transformations can also be composed:

$$\begin{array}{c} \alpha: F \xrightarrow{\cdot} G, \beta: G \xrightarrow{\cdot} H \\ \beta \circledcirc \alpha: F \xrightarrow{\cdot} H \end{array}$$

The monad and examples from Haskell

A computer-checked library for Category Theory in Lean

Csanád Farkas Supervisors: Benedikt Ahrens, Lucas Escot Technical University of Delft

Horizontal Composition

Natural Isomorphisms

While it may be easy to see from the definitions that:

$$F \cdot (G \cdot H) = (F \cdot G) \cdot I$$
$$Id \cdot F = F = F \cdot Id$$

The type checker sees those as different types. To fix this we can show that there is a natural transformation from one side to the other, and the other way round. This transformation is then called a **natural isomorphism**. To prove they are a natural isomorphism we need to show that all assigned arrows in the transformation are isomorphisms. This is easy as the assigned arrows are the identity arrow.

ory) :=

structure natural transformation { $\mathcal{C} \mathcal{D}$: category}

4 \mathcal{D} .hom (F.map_obj X) (G.map_obj X))

 $\mathcal{D}.compose$ (G.map_hom f) (α X) = $\mathcal{D}.compose$ (α Y) (F.map_hom f)

Maybe

References

[1] B. C. Pierce, "A taste of category theory for computer scientists,", Feb. 2011. DOI: 10.1184/ R1/6602756.v1. [Online]. Available: https://kilthub.cmu.edu/articles/journal_ contribution/A_taste_of_category_theory_for_computer_scientists/6602756.