The monad and examples from Haskell

A computer-checked library for Category Theory in Lean T U D e I f.t

Csanad Farkas
Supervisors: Benedikt Ahrens, Lucas Escot

Technical University of Delft

Introduction Horizontal Composition Maybe
| | | | Another way to compose transformations: i —- Definition 1 —- Definition
= The aim of this project was to make a library for category theory. - 1 def bimap {C D &: category} 2 data Maybe a = DNothing | Just a > inductive Maybe (a : Type*)
. ' 2 {FF' :C=D}{GG" : D= &% 3 3 | none : Maybe
V\/teh.used ah c?(Thputer cltwecke? Ianguage / N - : G 2 @ @) (oo B S B0 4 . I
= this can check the correctness of proofs N . L (@G- F) > (G - F') :=) i
= we chose to use Lean 3 C/o[\DQ\‘a g\g 5 { 6 —— L 6 —— L
= My question was to add the definition of the monad, and add examples from Haskell NS S A ° @ = X 7 e 18 Mgl Uikgbe &) — Hegbs @ = LEgiae. JOAm e & Wy
= The two examples are: Maybe, List s “ ! S eompese (Bp.e (7" wep @8y 1) 8 join (Just x) = x g : Maybe (Maybe a) — Maybe o
P ' YPE, = (G.map_hom (a.a X)), 9 join Nothing = Nothing o | Maybe.none := Maybe.none
= This poster will give both the regular definitions as well as the corresponding code snippets. GF : naturality_condition := _, 10 10 | (Maybe.some x) := x
) 9 ¥ 11 11
Proof for naturality: 12 ooy 12 oy
turn :: a — Maybe a 13 def Maybe.return {a : Typex} (x : a) : Maybe a :=
Category . B
i ., 14 return = Just 14 Maybe.some x
: : X G- F(X) »y G - F'(X) yG - F'(X)
A category C is defined as the following [1] | structure category := Glay) Br)
. 2 -—atributes M(M(Ma)) fmap join 5 M(Ma’)
3 (Co . Sort u) Ma fmap return —— M (Ma) M(Ma)+— return— Ma
= A collection of objects, A, B, ... 4+ (hom t I (XY : Cp), Sort v) / ‘ ‘
) 5 (id : I (X : Cy), hom X X) , .
= A collection of arrows, f : A - B B (coupese ¢ TR T T 2 G f G - F(f) G- F(f) G - F(f) 1d join join id join join
= A composition operator between arrows: Ef f Ezz ; i; \ | | / l l
. ’ Ma Ma
f:A—=Bg:B—=C 9 hom X Z
10) + + + + M(Ma) join » Ma
: G(ay) , Be ,]
gof:d—=0C 1 | Y G-F(Y) ’ »G-F(Y) ~ +G -F(Y)
oy . 12 ——axritoms
The composition must follow three laws: Gern a6 8 W AR T 8 Gl @ 2 Tem K T, .
f o ZdA _ f 14 compose f (id X) = f) List
15
16 (right id : V {X Y : Co} (f : hom X Y), Natural Isomorphisms 1 —— Definition 1 inductive List (a: Type) : Type
’I:dB o f o f 17 compose (id Y) f = f) 2 data List a = [] | a : List a 2 | nil : List
o 18 o . 3 3 | cons (head: «) (tail: List) : List
o (assoc VXY ZW : G While it may be easy to see from the definitions that: 4 4
: : : def List.merge {a : Type}
ho(gof)Z(hOg)Of 20 (f : hom X Y) (g : homY Z) (h : hom Z W), F(GH):(FG>H 5 5 . . .
01 compose h (compose g f) = 6 6 : List o« — List o — List «
The first two of which are sometimes -) compose (Compess b g) & ld-F=F=1F-1ld 7 7 : Eiét{;nﬂ s x x grs
. . .) . 23 8 8 ist.cons x xs) ys :=
;ombmed Into one U.”'t law. id 4 Is the The type checker sees those as different types. To fix this we can show that there is a natural 9 0 List.cons x (List.merge xs ys)
identity arrow on object A. transformation from one side to the other, and the other way round. This transformation is then o , o ,
called a natural isomorphism. To prove they are a natural isomorphism we need to show that all W o Cll — L M e Jota ded ¢ Lisv (Wt @) — LSt @
Functor assigned arrows in the transformation are isomorphisms. This is easy as the assigned arrows are 13 join xs = [y | x ¢+ xs, y < x] 13 | List.nil := List.nil
The full definition is as follows [1]: | structure functor (C D : category) := the identity arrow. 12 2 | (fsmcons &8y m fastmerge § flaet Join 199
. 2 (map_obj : C — D) 16 == 1) 16 == 1)
= Afunctor F': C — D between Categorles s (map hom : M {XY : C} (£ : C.hom X Y), 17 return :: a — [al] 17 def List.return {a} (a : a) : List a :=
C and D. A D.hom (map _obj X) (map_obj Y)) 18 return x = [x] 18 List.cons a List.nil
)) 5 (id : V (X : C), map hom (C.id X) = D.id
= ' maps each C-object to a D-object. (map_obj X)) structure HMonad o
6 (com_ :V{XYZ:Cr({E : ChomXY) (g :C {C - category} [[[a]]] fmap join [[a]]
= ' maps each C-arrow to a D-arrow. X PY' 2 ' e & (T : C = C) [a] fmap return — [[a]] [[al] +— return — [a]
.hom , .
* |t must follow the laws below: 7 map_hom (C.compose g f) = D.compose (map_hom \ /
)) g) (map_hom £)) : (T -T) > T) id join join id
F(ZdA) — ZdF(A) 8 D e } \\ / join join
o 9 def composition_functor : category (T T
F(go f)=F(g)o F(f) o (G:D=E& F:C=D) :C= & := (140 > o e J l
= Two functors F:C - D,G:D - Ecan 41 | | | Gesse -
b dintoG.F-C £ 12 map_obj := A X, G.map_obj (F.map_obj X), L® pux (IDT) =t
e composed intoG- F : C — 3 @Zp{mzl = A1, G.?al_oahom <g.¢3p_ho§ f), L © (IDT) x 4 ® (assoc nt T T T) [[all join » [al
14 1a := egln.lrﬂ.:ro, rw r.1d, rw G.1d, end,)
15 comp := begin intros, rw F.comp, rw G.comp, end,
6 (lu : w © IDT x n=1IDT ® right unit nt T) References

(ru : w ©nm X IDT =1IDT © left unit nt T)

[1] B. C. Pierce, “A taste of category theory for computer scientists,”, Feb. 2011. DOI: 10.1184/
R1/6602756 . v1. [Online]. Available: https://kilthub. cmu.edu/articles/ journal _
contribution/A taste of category theory for computer scientists/6602756.

Natural Transformatiion

Assume the functors F, G are from C to D. 1 structure natural transformation {C D : category}
The transformation must for each C-object EF G : C(= Ic))) =

. I (X ,
A assign a D-arrow from F(A) to G(A), .

2
3
4 D.hom (F.map_obj X) (G.map_obj X))
denoted a 4. To be natural, it must also: 5 (naturality_condition :
6 VXY : C} (f : C.hom X Y),
7 D.compose (G.map _hom f) (a X) =
\v’f - A B, (A) B € C) = 8 D.compose (a Y) (F.map_hom f)
s)

apo F(f)=G(f)oay o
Natural transformations can also be 1 def nt_comp {C Diifcategoryd {F G H € == Di
12 (r1 : G>H) (19 : F>G) : F>H :=
composed: 3 [
. . .) 14 a := X, D.compose (71 . X) (792 . X),
R G’ 5 G —>H 15 naturality_condition := _,
foa:F—H 16 }

GitHub Repository: sgciprian/ct CSE3000 - Research Project farkas.csacsa@gmail.com

https://doi.org/10.1184/R1/6602756.v1
https://doi.org/10.1184/R1/6602756.v1
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://github.com/sgciprian/ct
mailto:farkas.csacsa@gmail.com

	References

