
The monad and examples from Haskell
A computer-checked library for Category Theory in Lean

Csanád Farkas
Supervisors: Benedikt Ahrens, Lucas Escot

Technical University of Delft

Introduction

The aim of this project was to make a library for category theory.

We used a computer checked language
this can check the correctness of proofs

we chose to use Lean 3

My question was to add the definition of the monad, and add examples from Haskell
The two examples are: Maybe, List

This poster will give both the regular definitions as well as the corresponding code snippets.

Category
A category C is defined as the following [1]

:

A collection of objects, A, B, . . .

A collection of arrows, f : A→ B

A composition operator between arrows:

f : A→ B, g : B → C

g ◦ f : A→ C

The composition must follow three laws:

f ◦ idA = f

idB ◦ f = f

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

The first two of which are sometimes

combined into one unit law. idA is the

identity arrow on object A.

1 structure category :=
2 --aτributes
3 (C0 : Sort u)
4 (hom : Π (X Y : C0), Sort v)
5 (id : Π (X : C0), hom X X)
6 (compose : Π {X Y Z : C0}
7 (g : hom Y Z)
8 (f : hom X Y),
9 hom X Z

10 )
11

12 --axioms
13 (left_id : ∀ {X Y : C0} (f : hom X Y),
14 compose f (id X) = f)
15

16 (right_id : ∀ {X Y : C0} (f : hom X Y),
17 compose (id Y) f = f)
18

19 (assoc : ∀ {X Y Z W : C0}
20 (f : hom X Y) (g : hom Y Z) (h : hom Z W),
21 compose h (compose g f) =
22 compose (compose h g) f
23 )

Functor
The full definition is as follows [1]:

A functor F : C → D between categories

C and D.
F maps each C-object to a D-object.
F maps each C-arrow to a D-arrow.
It must follow the laws below:

F (idA) = idF (A)
F (g ◦ f ) = F (g) ◦ F (f )

Two functors F : C → D, G : D → E can
be composed into G · F : C → E

1 structure functor (C D : category) :=
2 (map_obj : C → D)
3 (map_hom : Π {X Y : C} (f : C.hom X Y),
4 D.hom (map_obj X) (map_obj Y))
5 (id : ∀ (X : C), map_hom (C.id X) = D.id

(map_obj X))
6 (comp : ∀ {X Y Z : C} (f : C.hom X Y) (g : C

.hom Y Z),
7 map_hom (C.compose g f) = D.compose (map_hom

g) (map_hom f))
8

9 def composition_functor {C D E : category}
10 (G : D ⇒ E) (F : C ⇒ D) : C ⇒ E :=
11 {
12 map_obj := λ X, G.map_obj (F.map_obj X),
13 map_hom := λ _ _ f, G.map_hom (F.map_hom f),
14 id := begin intro, rw F.id, rw G.id, end,
15 comp := begin intros, rw F.comp, rw G.comp, end,
16 }

Natural Transformatiion
Assume the functors F, G are from C to D.
The transformation must for each C-object
A assign a D-arrow from F (A) to G(A),
denoted αA. To be natural, it must also:

∀f : A→ B, (A, B ∈ C)⇒
αB ◦ F (f ) = G(f ) ◦ αA

Natural transformations can also be

composed:

α : F
.→ G, β : G

.→ H

β } α : F
.→ H

1 structure natural_transformation {C D : category}
2 (F G : C ⇒ D) :=
3 (α : Π (X : C) ,
4 D.hom (F.map_obj X) (G.map_obj X))
5 (naturality_condition :
6 ∀ {X Y : C} (f : C.hom X Y),
7 D.compose (G.map_hom f) (α X) =
8 D.compose (α Y) (F.map_hom f)
9 )

10

11 def nt_comp {C D : category} {F G H : C ⇒ D}
12 (τ 1 : G � H) (τ 2 : F � G) : F � H :=
13 {
14 α := � X, D.compose (τ 1�. X) (τ 2�. X),
15 naturality_condition := _,
16 }

Horizontal Composition
Another way to compose transformations:

Proof for naturality:

1 def bimap {C D E: category}
2 {F F' : C ⇒ D} {G G' : D ⇒ E}
3 (bb : G � G') (α : F � F')
4 : (G · F) � (G' · F') :=
5 {
6 α := � X,
7 E.compose (bb.α (F'.map_obj X))

(G.map_hom (α.α X)),
8 naturality_condition := _,
9 }

Natural Isomorphisms

While it may be easy to see from the definitions that:

F · (G ·H) = (F ·G) ·H
Id · F = F = F · Id

The type checker sees those as different types. To fix this we can show that there is a natural

transformation from one side to the other, and the other way round. This transformation is then

called a natural isomorphism. To prove they are a natural isomorphism we need to show that all

assigned arrows in the transformation are isomorphisms. This is easy as the assigned arrows are

the identity arrow.

Monad
The monad is defined by two natural

transformations and some laws that must

apply to said transformations:

Given a category C, and an endofunctor

T : C → C.
A natural transformation µ, from
T 2 = T · T to T .

A natural transformation η, from Id to T .

With laws:

µ } µ× IDT = µ } IDT × µ

µ } IDT × η = IDT = µ } η × IDT

Here IDT is the identity natural

transformation from T to T .

The laws visually:

1 structure Monad
2 {C : category}
3 (T : C ⇒ C)
4 :=
5

6 (µ : (T · T) � T)
7

8 (η : (Id C) � T)
9

10 (assoc :
11 µ } µ × (ID T) = t
12 µ } (ID T) × µ } (assoc_nt T T T)
13 )
14

15 (lu : µ } ID T × η = ID T } right_unit_nt T)
16

17 (ru : µ } η × ID T = ID T } left_unit_nt T)

Maybe
1 -- Definition
2 data Maybe a = Nothing | Just a
3

4

5

6 -- µ

7 join :: Maybe (Maybe a) → Maybe a
8 join (Just x) = x
9 join Nothing = Nothing

10

11

12 -- η

13 return :: a → Maybe a
14 return = Just

1 -- Definition
2 inductive Maybe (α : Type*)
3 | none : Maybe
4 | some : α → Maybe
5

6 -- µ

7 def Maybe.join {α : Type*}
8 : Maybe (Maybe α) → Maybe α

9 | Maybe.none := Maybe.none
10 | (Maybe.some x) := x
11

12 -- η

13 def Maybe.return {α : Type*} (x : α) : Maybe α :=
14 Maybe.some x

List
1 -- Definition
2 data List a = [] | a : List a
3

4

5

6

7

8

9

10

11 -- µ

12 join :: [[a]] → [a]
13 join xs = [y | x ← xs, y ← x]
14

15

16 -- η

17 return :: a → [a]
18 return x = [x]

1 inductive List (α: Type) : Type
2 | nil : List
3 | cons (head: α) (tail: List) : List
4

5 def List.merge {α : Type}
6 : List α → List α → List α

7 | List.nil ys := ys
8 | (List.cons x xs) ys :=
9 List.cons x (List.merge xs ys)

10

11 -- µ

12 def List.join {α} : List (List α) → List α

13 | List.nil := List.nil
14 | (List.cons l ls) := List.merge l (List.join ls)
15

16 -- η

17 def List.return {α} (a : α) : List α :=
18 List.cons a List.nil

References

[1] B. C. Pierce, “A taste of category theory for computer scientists,”, Feb. 2011. DOI: 10.1184/
R1/6602756.v1. [Online]. Available: https://kilthub.cmu.edu/articles/journal_
contribution/A_taste_of_category_theory_for_computer_scientists/6602756.

GitHub Repository: sgciprian/ct CSE3000 - Research Project farkas.csacsa@gmail.com

https://doi.org/10.1184/R1/6602756.v1
https://doi.org/10.1184/R1/6602756.v1
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://github.com/sgciprian/ct
mailto:farkas.csacsa@gmail.com

	References

