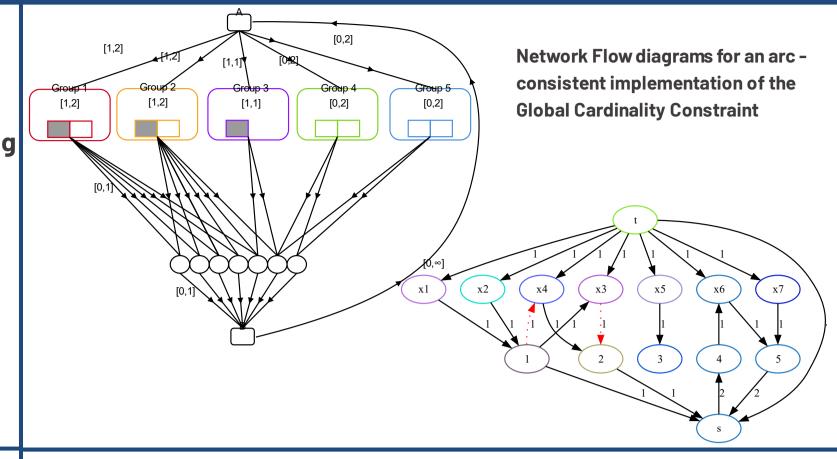


Evaluating the usefulness of Global Cardinality constraint propagators in Lazy Clause Generation


Sudoku can be solved using only the GCC

1 Introduction FDP LCG

Finite Domain Propagation (FDP): Solve problems by modeling restrictions as constraints. Alternate between Search and Propagation.

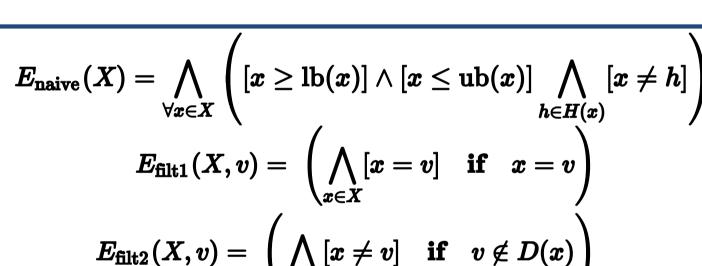
Trade-off: runtime vs **pruning strength**[1]

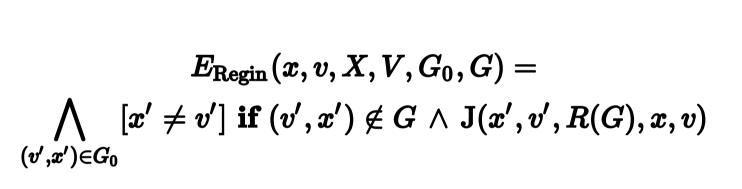
Lazy Clause Generation (**LCG**): Newer, state-of-the-art. Combines **Propagation** + **SAT Solver**

GCC

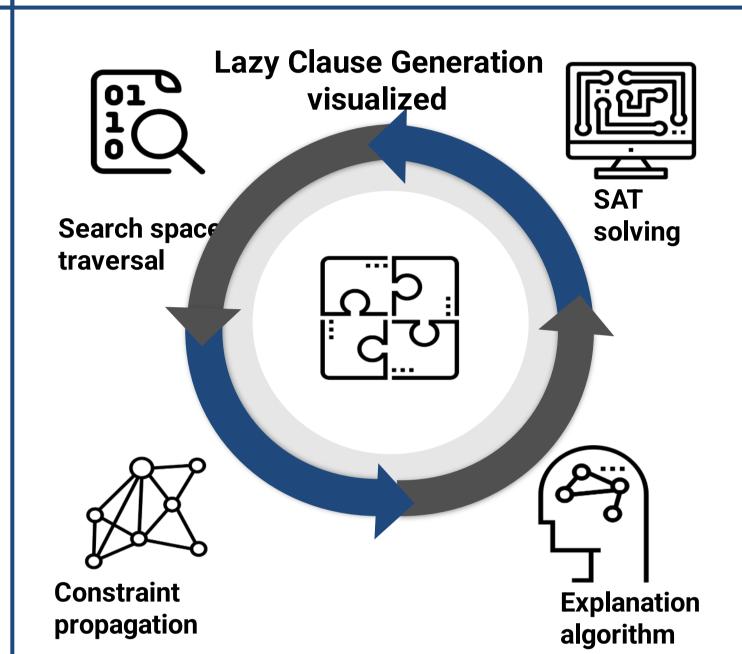
Decomposition

2 Research question


Global Cardinality Constraint (**GCC**): how many times values can be assigned to variables.


- Arises in real-world **scheduling problems**[2][3]
- GCC can be decomposed into smaller, simpler constraints.

LCG questions need for constraints like the GCC


- Decompositions canyield state-of-the-art solutions for some constraints.[1][4]
- But: Little research about implementing GCC propagators for LCG

Question: Can a GCC propagator in LCG compete against decomposition?

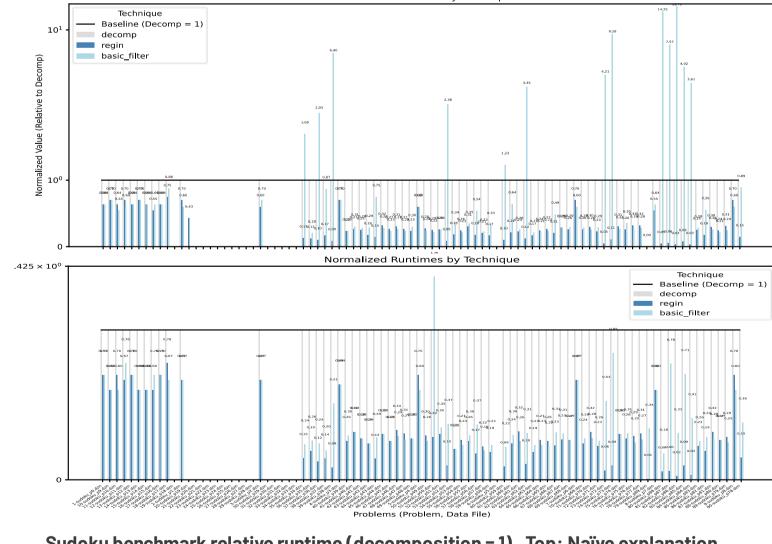
The explanation algorithms: General explanation, Basic Filter explanation and Regin explanation

3 Methodology

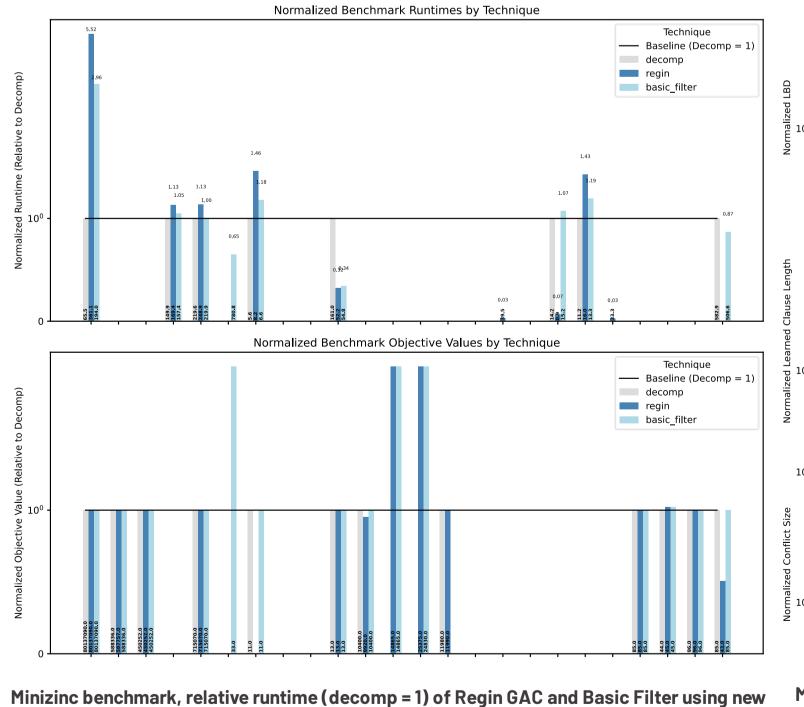
Two propagators and, **two explanations** are **benchmarked** using the Minizinc Challenge [5] and Sudoku against decomposition.

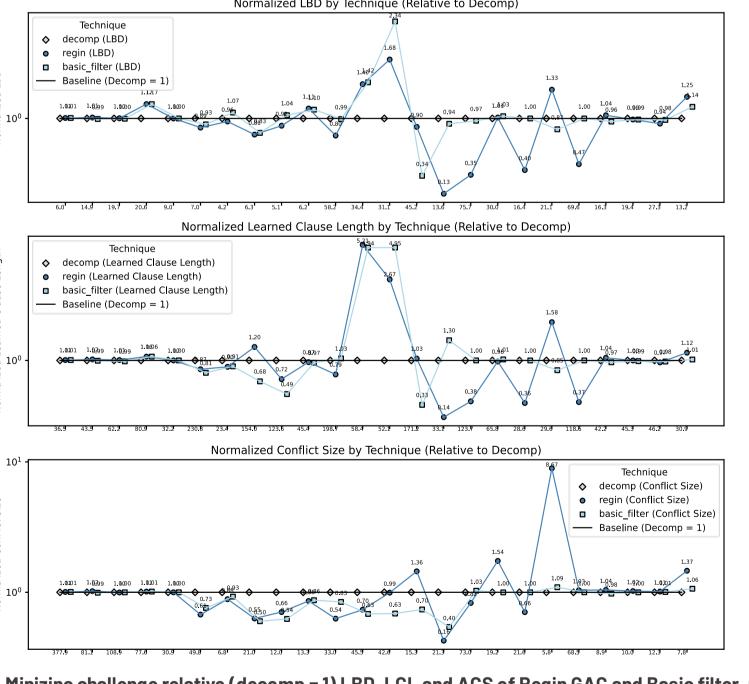
Propagator algorithms: Explanation algorithms:

- Regin GAC[6]
- Naive
- Basic Filter
- Purpose-built


4 Results

 Geometric mean increase ratio (compared to decomposition) of Regin GAC and Basic filter Sudoku:


(Regin, Basic Filter)	Speedup	LBD	LCL	ACS
General expl	(3.42, 1.52)	(0.90, 1.05)	(0.91, 0.95)	(0.92, 0.95)
Purpose built expl	(3.19, 2.28)	(0.85, 1.00)	(0.91, 1.03)	(0.93, 0.84)


Minizinc challenge:

(Regin, Basic Filter)	Speedup	LBD	LCL	ACS
General expl	(1.34, 0.91)	(0.90, 1.05)	(0.91, 0.95)	(0.92, 0.95)
Purpose built expl	(1.36, 1.00)	(0.85, 1.0)	(0.91, 1.03)	(0.93, 0.84)

Sudoku benchmark relative runtime (decomposition = 1). Top: Naïve explanation. Bottom: Specialized explanation

Minizinc challenge relative (decomp = 1) LBD, LCL and ACS of Regin GAC and Basic filter, using new explanation algorithms

5 Conclusion

explanation algorithms

Regin GAC and Basic Filter superior against decomposition on Sudoku

[6] Regin, J. C. (1996). Generalized arc consistency for global cardinality constraint proceedings of the National Conference on Artificial Intelligence, 1

- Regin GAC wins in runtime against decomposition on Minizinc challenge. Basic Filter roughly equal.
- New explanation greatly helps Basic Filter. Does not help Regin GAC as much because of high runtime cost and the clause length being larger than it should be
- New explanations have a 5% LBD reduction compared to the naïve one in both Sudoku and Minizinc challenge. How much does GCContribute to LBD?
- Regin GAC achieved a lower (better) LBD compared to decomposition (85%) using newexplanation.

Poforoncos

[1] Stuckey, P. J. (2010). Lazy clause generation: Combining the power of SAT and CP (and MIP?) solvingLecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6140 LNCS. https://doi.org/10.1007/978-3-642-13520-0_3

[2] Geibinger, T., Kletzander, L., Krainz, M., Mischek, F., Musliu, N., & Winter, F. (2021). Physician Scheduling During a PandemicLecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12735 LNCS. https://doi.org/10.1007/978-3-030-78230-6_29

[3] Musliu, N., Schutt, A., & Stuckey, P. J. (2018). Solver independent rotating workforce scheduling. Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10848 LNCS. https://doi.org/10.1007/978-3-319-93031-2_31

[4] Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G. (2009). Why cumulative decomposition is not as bad as it soundsecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5732 LNCS. https://doi.org/10.1007/978-3-642-04244-7_58

[5] Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The MiniZinc challenge 20082013. In Al Magazine (Vol. 35, Issue 2), https://doi.org/10.1609/aimag.y 35i2.2539

Image References: • Algorithm by Andi w

Algorithm by Andi wiyanto from https://thenounproject.com/browse/icons/term/algorithm/ (CC BY 3.0)
 Binary code by Kokota from https://thenounproject.com/browse/icons/term/binary -code/ (CC BY 3.0)
 Puzzle by Smalllike from https://thenounproject.com/browse/icons/term/puzzle/ (CC BY 3.0)
 Solution by Esha chaudary from https://thenounproject.com/browse/icons/term/solution/ (CC BY 3.0)
 Versus by Amethyst Studio from https://thenounproject.com/browse/icons/term/versus/ (CC BY 3.0)