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Figure ?: A Sudoku Puzzle, which can be solved using only GCCs
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Global Cardinality Constraint (GCC) : how many times values
can be assigned tovariables. Search spacg
e Arisesin real-world scheduling problems[2] 3] traversal
e GCC canbedecomposedinto smaller, simpler constraints.
LCG questionsneed for constraintslike the GCC
e« Decompositions canyield state-of-the-art solutions for
some constraints.[1][ 4]
e But: Littleresearch about implementingGCC propagators
for LCG

Tﬁ Methodology

E.. Two propagators and, two explanations are benchmarked
p . using the Minizinc Challenge [5]and Sudoku against

SAT decomposition.

solving Propagator algorithms: Explanationalgorithms:

e Regin GAC[6] o Naive

o BasicFilter o Purpose-built

Runtime - Pruning strength

n Results

e Geometric mean increase ratio (compared to
decomposition) of Regin GAC and Basic filter

Question: Can a GCC propagator in LCG Constraint Explanation Sudoku:

compete against decompasition?
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B Conclusion

e Regin GAC and Basic Filter superior against decomposition on Sudoku

e Regin GAC winsin runtime against decomposition on Minizinc challenge. Basic Filter roughly equal.

o New explanation greatly helps Basic Filter. Does not help Regin GAC as much because of high runtime cost and the clause lengh being larger than it should be
e New explanations havea 5% LBD reduction compared to the nalve one in both Sudoku and Minizinc challenge. How much does GCCentribute to LBD?

e Regin GAC achieved a lower (better) LBD compared to decomposition (85%)using newexplanation.
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