Regional Transferability of Graph Neural Networks for Traffic Forecasting

How does the GNN traffic forecasting model, trained with long-horizon historical data from one region, perform in regions lacking historical traffic data, and how are these performance variations correlated with spatial differences among the regions?

Experiments and

Results Model performance in the training region

Dataset	MAE	RMSE
Full dataset	3.60	7.59
50-sensor subset	2.92	6.43
10-sensor subset	4.75	14.56

Table 1: Model performance for 1-hour predictions on sensors with historical data in METR-LA area

Transferred model performance in comparison with other models

Model STGCN FC-LSTM GMAN DCRNN **50-sensor subset DCRNN** 10-sensor subset DCRNN

Table 2: Transfered model performance on sensor sets in PEMS-BAY. The first 4 rows represent models trained on the full dataset [3]. The last 2 rows represent the average performance of the model tested on subsets of the dataset with the standard error

Ground Truth

200

Amount of timestamps (one is 5 min)

ground truth (blue) versus predictions (red)

--- Prediction

Example of transfered model predictions

References

 W. Jiang and J. Luo, 'Graph Neural Network for Traffic Forecasting: A Survey', Expert Systems with Applications, vol. 207, p. 117921, Nov. 2022, doi: 10.1016/j.eswa.2022.117921.
T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, 'Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting', in 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy: IEEE, Jan. 2021, pp. 10367–10374. doi: <u>10.1109/ICPR48806.2021.9413270</u> [3] Y. Li, R. Yu, C. Shahabi, and Y. Liu, 'Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting'. arXiv, Feb. 22, 2018. doi: 10.48550/arXiv.1707.01926.

Research questions

• What is the performance of the GNN model in the traffic forecasting of the training

• What is the performance of the same model on the unexplored structurally

• How does the structural difference between training and transfer regions correlate with the model's performance in the transfer region?

MAE	RMSE
6.53	10.07
4.69	8.48
4.05	7.57
3.3	6.91
4.74 ± 0.02	9.96 ±0.03
3.75±0.04	7.78±0.07

- DCRNN [3] model was used as the main model and it was trained over a 10sensor set and a 50-sensor set in the region of Los Angeles (METR-LA)
- Masked Mean Absolute Error (MAE) is used as the main **performance** measure, and Root Mean Squeared Error (RMSE) is an additional
- Models were transferred to regions with a similar amount of sensors in the San Jose area (PEMS-BAY)
- Distance between areas was measured using Frobenius distance, Absolute Sum distance, and Cosine distance operating on graph adjacency matrixes
- Multiple masks (0, 20000 and 40000) were introduced to cover missing distance values in a graph adjacency matrix
- The correlation between distance and model performance was measured using Pearson coefficient
- Bucketed simulated annealing (BSA) approach was introduced to find graphs with diverse distances

500

400

300

Supervisor: Elena Condeguti

AbsSum distance (negative correlation)

Weak positive correlation can be observed for CosD

Figure 4: Correlation between graph distance(measured in CosD with mask 40000) and performance of the 10-sensor model

I.Kravcevs@student.tudelft.nl

Conclusions

- GNN performance is highly dependent on the selected training region
- Models trained on low spatial correlation regions transfer better by avoiding overfitting
- The structural differences between the training and transfer regions are not strongly correlated with the model's performance.
- The current graph distance metrics mostly capture incorrect regional spatial patterns

Future work

- Training the model for different datasets and regional scenarios
- Exploration of all the proposed metric configurations using BSA
- Exploration of other possibilities for the mask values and graph distance metrics

• Deeper exploration of the cosine metrics for the transferability

	50-sensor model	10-sensor model
20000 mask)	0.23	0.11
40000 mask)	0.4	0.35
0 mask)	-0.55	-0.32
m (0 mask)	-0.37	-0.24

Table 5: Correlation between graph distances and performance of the 50-sensor and 10sensor models for the transfer graphs selected using BSA

Correlation between graph distance and model performance (50-sensor model)

Figure 5: Correlation between graph distance(measured in CosD with mask 40000) and performance of the 50-sensor mode