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forecasting due to the ability to capture the same model on the used as the main performance where: * The structural differences between the training and
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involves model training on one region’s e Models were transferred to regions with * The current graph distance metrics mostly capture
e How does the structural
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structure of the training and transfer distance and Cosine distance opberatin A.;,B.; : the column vectors from matrices A and B k
traffic sensor graph [2 , TE , P 9 6 ) Future wor
on gI‘CIph Cldjdcency matrixes Figure 1: Graph distance metrics
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