Adapting to Dynamic User Preferences in Recommendation Systems via Deep Reinforcement Learning

1. Problem Statement

The repeated interplay between users and recommender systems often creates feedback loops that result in recommendations increasingly tailored to the user's preferences.

This can result in:

- Influence on user behaviour
- Adversity in learning the user's preferences over extended horizons.

2. Research Objective

- 1.Benchmark two Deep Reinforcement Learning: Generic FullSlateQ [Sunehag et al. 2015] and SlateQ [le et al. 2019b] under preference dynamics.
- 2.Observe if the algorithms are capable to optimize for longterm user engagement and cumulative satisfaction.

3. Our Contribution

- Model recommendation task as a slate-MDP.
- Construct a simulated environment with various degrees of preferential dynamics [Top right plot].
- Provide an in-depth analysis of the performance of FullSlateQ and SlateQ over extended horizons.

4. Methodology

- We make use of RecSim [le et al. 2019a] for creating stylized user, document and user response models.
- We assume a multinomial proportional choice model for defining the user choice behaviour.
- We introduce user engagement and satisfaction latent $\frac{1}{2}$ user attributes to measure the effectiveness of long-term value optimization.
- We adopt two models of user preference dynamics: 1. Function-based interest evolution. [Left plot] 2. Session termination.

J	500	1k	1.5
ocoarch	Objective 2		

Research Objective 2:

- Both FullSlateQ and SlateQ behave myopically, thus failing to learn a higher quality recommendation policy, which further maximizes long-term user engagement. [Right plot]
- Satisfaction stays rather high for both algorithms, 0.84 yet FullSlateQ performs similarly to the random 0.83 baseline. [Left plot]

6. Conclusion

Delft University of Technology

5. Results

Research Objective 1:

- SlateQ outperforms FullSlateQ in both stationary and non-stationary environments. On average, 10.57% better than FullSlateQ in dynamic environemnts.
- Remarkably, SlateQ performs better under high-frequency preference dynamics than in stationary environments [Left plot].
- With slate size 3, FullSlateQ takes approximately 6X the training time of SlateQ.

• SlateQ offers notable improvements (10.57%) in user engagement compared to FullSlateQ in dynamic environments. • SlateQ renders RL tractable with slates, through decomposing slate Q-values into Q-values for individual items, and thus practical in commercial applications.

• Both SlateQ and FullSlateQ fail to make a suitable tradeoff between guiding the user's preferences towards higherquality documents at the expense of temporarily diminishing the user budget.

Author

Luca Pantea <P.L.Pantea@student.tudelft.nl>

Supervisors

Dr. Frans Oliehoek <F.A.Oliehoek@tudelft.nl> Dr. Aleksander Czechowski <A.T.Czechowski@tudelft.nl> Davide Mambelli <D.Mambelli@tudelft.nl> Oussama Azizi <0.Azizi@tudelft.nl>

References

Eugene le, Vihan Jain, JingWang, Sanmit Narvekar, Ritesh Agarwal, RuiWu, Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Covington, Jim McFadden, Tushar Chandra, and Craig Boutilier. 2019b. Reinforcement Learning for Slatebased Recommender Systems: A Tractable Decomposition and Practical Methodology. CoRR abs/1905.12767 (2019) arXiv:1905.12767 http://arxiv.org/abs/1905.12767

Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin, and Ben Coppin. 2015. Deep Reinforcement Learning with Attention for Slate Markov Decision Processes with High-Dimensional States and Actions. CoRR abs/1512.01124 (2015). arXiv:1512.01124 http://arxiv.org/abs/1512.01124

Eugene le, Chih-Wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and Craig Boutilier. 2019a. RecSim: A Configurable Simulation Platform for Recommender Systems. CoRR abs/1909.04847 (2019). arXiv:1909.04847 http://arxiv.org/abs/1909.04847