Adapting to Dynamic User Preferences in
Recommendation Systems via
Deep Reinforcement Learning
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4. Methodology
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e We adopt two models of user preference dynamics: User interest in a given topic

1. Function-based interest evolution. [Left plot]
2. Session termination.
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5. Results

Research Objective 1:
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e SlateQ outperforms FullSlateQ in both stationary and non-stationary environments. On

ynamic environemnts.

403 e Remarkably, SlateQ performs better under

stationary environments [Left plot].
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Research Objective 2:

e Both FullSlateQ and SlateQ behave myopically, thus
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failing to learn a higher quality recommendation
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engagement. [Right plot]
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nigh-frequency preference dynamics than in

e With slate size 3, FullSlateQ takes approximately 6X the training time of SlateQ.

Average Quality in Training
| Non-stationary SlateQ (High-frequency)
1 Non-stationary FullSlateQ (High-frequency)
] Non-Stationary Q-Learning (High-frequency)
"] Non-Stationary Random (High-frequency)

0.67

0.668

0.666

0.664

0.662

0.66

2k 4k 6k 8k

e SlateQ offers notable improvements (10.57%) in user engagement compared to FullSlateQ in dynamic environments.

6. Conclusion

e SlateQ renders RL tractable with slates, through decomposing slate

thus practical in commercial applications.

Q-values into Q-values for individual items, and

e Both SlateQ and FullSlateQ fail to make a suitable tradeoff between guiding the user’s preferences towards higher-

quality documents at the expense of temporarily diminishing the user

budget.



