
Marnix Massar CSE3000 Research Project

m.p.massar@student.tudelft.nl Supervisors: Jesper Cockx & Lucas Escot

Practical Verification of Lenses

1. Background

• Agda is a total, dependently typed functional

programming language, mostly used for proofs

• Haskell is a functional programming language used for

real world applications

• AGDA2HS is a tool for translating code from Agda to

Haskell, since libraries written in Agda can contain their
own proofs, and libraries written in Haskell cannot

2. Lenses

• A lens is a first class getter/setter for functional

programming languages

• Code written with lenses is easier to read and maintain,

as is demonstrated in Fig. 1

Is it possible to implement a
formally verified version of

lenses using AGDA2HS?

3. Implementation

Lenses are defined by their ability to put and get,
not their implementation. Some options are:

• As a type synonym using functors, so function

composition can be reused (Fig. 2)

• As a record type, losing regular functional

composition (Fig. 3)

4. Verification

There are certain provable lens laws a lens
needs to obey to be a very well-behaved lens:

• PutGet: Get(Put(v, o)) ≡ v

• GetPut: Put(Get(o), o) ≡ o

• PutPut: Put(v2, Put(v1, o)) ≡ Put(v2, o)

5. Results and conclusions

• A working implementation of lenses as

records has been implemented, including
verified lenses for tuples and records (Fig. 4,
5 & 6)

• Lenses for list indices were not implemented,
due to the difficulty created by the dynamic
size of lists

• One potential research direction is the
implementation of lenses for dynamically
sized structures such as lists

• To implement type-synonym lenses, AGDA2HS
needs to support explicit “forall” in types.
This too warrants further research

Fig. 2 - Lenses as a type synonym.

Fig. 3 - Lenses as record types.

Fig. 4 - An example lens 'one' in Agda, which operates on the first
element of a tuple.

Fig. 5 - Translation of Fig. 4 using AGDA2HS.

Fig. 1 - An example use case for lenses. The function healPlayer increments a player’s health

without lenses. The much smaller and more readable function healPlayer' does the same by
composing the lenses player, status, and health. The lens implementations have been left out
for brevity.

Fig. 6 - Example usage of the translation from Fig. 5.

mailto:m.p.massar@student.tudelft.nl

