
NSGA-II Preference
criterion MOSA Dynamic target

selection
DynaMOSA

SPEA-II DynaSPEA-IIMOSASPEA-II

Conclusion

Author: Erwin Li - C.R.E.Li@student.tudelft.nl
Supervisors: Annibale Panichella,
 Mitchell Olsthoorn, Dimitri stallenberg

Investigating the
performance of
SPEA-II on
automatic test
case generation

Approach

Introduction

Results

Study design

Main idea: take the DynaMOSA
augments, but this time use
SPEA-II as the base algorithm
instead of NSGA-II

Measure branch
coverage for each
algorithm.

References
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri,
and Janis Benefelds. 2017. An industrial evaluation of unit test
generation: Finding real faults in a financial application. In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 263–272.
[2] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo
Tonella. Automated test case generation as a many-objective
optimisation problem with dynamic selection of
the targets. IEEE Transactions on Software Engineering,
44(2):122–158, 2017
[3] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2:
Improving the strength Pareto evolutionary algorithm. TIK-report
103 (2001). 

RQ1: How effective are the
additions of DynaMOSA
features to SPEA-II?

RQ2: How does DynaSPEA-II
perform compared to
DynaMOSA on branch
coverage?
 

Implement all SPEA variants in
the Syntest framework 

Prefer solutions that fully
cover one or more targets
over trade-off solutions

Dynamically change the
objectives to only optimize for
reachable, uncovered targets

Overall stats

SPEA-II: 0.394
DynaSPEA-II 0.405
DynaMOSA: 0.399

Median branch coverage

SPEA-II VS DynaSPEA-II
DynaSPEA-II had higher
coverage in 13.9% of classes
Average increase of 4.92%
Increase ranges from 2.2% to
16.7%

DynaSPEA-II VS DynaMOSA

No statistically significant
difference was found
Algorithms have equal
performance

The DynaMOSA enhancements
are effective in increasing branch
coverage in SPEA-II
DynaSPEAII performs equally to
DynaMOSA

Increase benchmark size and
diversity
Conduct hyperparameter
experiments
Conduct experiments in other
programming language

Main findings Future work

Manual software testing is time
consuming and tedious, so
automatic testing has become an
active research field

Genetic algorithms have been
shown to be effective in automatic
test case generation [1]

Current state-of-the-art tool for
JavaScript is Syntest, which
implements the DynaMOSA
algorithm [2]

DynaMOSA is based on NSGA-II
and augmented with domain
knowledge. But what if we use a
different genetic algorithm as the
base?

SPEA-II is a genetic algorithm, that
has been successfully applied to
solve multi-objective problems. It
has performed better than NSGA-
II in some problems with higher-
dimensional objective spaces. [3]

Run these algorithms on a
benchmark of 36 diverse
classes

Compare results via
statistical analysis and
see if an algorithm is
statistically superior


