1. INTRODUCTION TO AGDA

« Dependently typed functional programming language
(see Figure 1)

. Used as a proof assistant // /

e
« Total language:

N\\\

o Always terminates
o No runtime errors

Figure 1: Example of dependent type

2. MOTIVATION

« Formal proofs are important for critical software

« Refactoring allows for more readable or better performing code

« Bigger adoption of formal proofs over tests

« Extension of the refactoring topic to less researched functional
programming [1]

3. OBJECTIVE

e Develop a simple functional programming language with
anonymous functions

« Implement a refactoring function to perform currying
(transformation from fl to f2 as seen in Figure 2) and uncurrying,
which is the inverse operation

e Create a formal proof using Agda as a proof assistant

Figure 2: Uncurried (f1) and curried (f2) function

4. HASKELL-LIKE LANGUAGE (HLL)

For this project a small Haskell-like language is created to show this idea in a
controlled and more basic environment, than a full functional programming
language. A subset of functionality is seen in Figure 3.
Main properties of it include:

o Intrinsic typing

» Big-step semantics

o de Bruijn indices [2]

Figure 3: Constructs related to anonymous functions in HLL

S. REFACTORING

The refactoring functions directly take the input programs and transform their
internal representation to use alternative constructs (see Figure 4). The currying
refactoring is more generalized with changes to functions and applications
separately. The uncurrying refactoring uses a more restrictive approach and
only changes the combination of function application and definition without
changing the actual values.

ref-curry : P ref-ctx ref-type p
ref-curry (fun, X = fun (fun (ref-curry x
ref-curry (app. X argl arg2) =
app (app (ref-curry X ref-curry arg2 ref-curry argl

ref-uncurry : D o

ref-uncurry (app (app (fun (fun X arg2) argl) =
app. (fun, (ref-uncurry X ref-uncurry argl ref-uncurry arg?2

Figure 4: Implementation of refactoring functions

]
TUDelft

6. PROOF

It is shown that before and after refactoring,
the following holds:
 values are changed in a controlled manner
e program is well-typed
e program terminates
To prove the change in values, a function is
used to describe the mapping and used in an

explicit proof (full proof available in the
repository linked in QR code seen in Figure 5). Figure 5: Repository link

HLL by definition only allows well-typed programs to be constructed,
thus any valid transformation preserves well-typedness by design.
Termination is preserved due to the previously mentioned value relation
and due to the totality of Agda, which makes sure that the refactoring
always finishes.

7. DISCUSSION

e The definition of currying is different from the usual case - it uses
particular language constructs instead of tuples

e The approach is limited to two arguments

« Agda proof has remaining holes that were proven manually in the
research paper

8. FUTURE WORK

« Use this research as a baseline to develop a tool for other
languages

« Expand the language to use n-argument functions

« Change the approach to use tuples for multiple arguments

« Make the tool more customizable with user interaction

9. REFERENCES

[1] Eman Abdullah AIOmar, Mohamed Wiem Mkaouer, Christian
Newman, and Ali Ouni. On preserving the behavior in software
refactoring: A systematic mapping study. Information and Software
Technology, 140:106675, 2021.

[2] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the church-
rosser theorem. Indagationes Mathematicae, 75(5):381-392, 1972.




