Computation Capabilities of Server-Side Trusted Execution Environments

A Comparison of TEEs to Privacy-Preserving Technologies

1. Introduction

- Despite running vulnerable software that can leak sensitive data-inuse, cloud servers are complex and widely adopted.
- TEEs provide hardware-based isolation for secure computation, with embedded cryptographic primitives. Many implementations exist, with varying trade-offs.
- Some protocols exist (FHE, MPC, ORAM, StE), but are known to be inflexible or inefficient. No prior work has systematically compared TEEs to these cryptographic techniques in a unified framework.

2. Methodology

- Literature review by following the **Backward Snowballing** method, starting from a System of Knowledge work [7].
- Selected relevant technologies and extracted their whitepaper work for a detailed description.
- Enriched literature by querying papers on Scopus regarding the four characteristics, leading to 69 materials.
- Compared common features of technologies with peers.

TDX

AMD SEV

SGX Кеу

Comparison 5.

- FHE Strongest in security, not practical yet for general use cases.
- **MPC** Best in distributed environments and flexible, with offline setup overhead.
- **ORAM** Great at hiding access patterns, limited to querying, and can be slow.
- **STE** Efficient, good in I/O access, but only for querying data.
- **TEE** Easy to integrate, efficient, but exposed to powerful attacks.

6. Conclusions

- There is no "silver bullet" properties must be balanced based on use cases.
- CVMs have a better performance and ease of use at the cost of a larger TCB than enclave-based counterparts.
- TEEs outperform the other techniques, but are less secure, shifting the trust to the vendor.
- MPC and FHE "will inevitably become attractive" [6, p. 138] with stronger hardware.

Research Questions

What are the computational limitations and capabilities of server-side Trusted Execution Environments concerning functionality, efficiency, security, and usability?

How do Trusted Execution Environments compare to Fully Homomorphic Encryption (FHE), Oblivious RAM (ORAM), Structured Encryption (STE), and Secure Multi-Party Computation (MPC)?

4. Characteristics

Functionality - How restrictive is the technology, and can it perform these features? **Efficiency** - What is the performance overhead compared to the non-isolated option? **Security** - How large is the trusted computing base, and how many vulnerabilities were there in the past? **Usability** - How practical is the system from the developer's perspective?

Any (Co					Leakage	Found in	Use Cases
	(Code)	Client-Server Attestation	Near-native, except I/O	Malicious, full software		Cloud servers optional	Data analysis Trusted AI
Any (Cir	Circuit)	Client-Server	Expensive KeyGen	IND-CCA2 threat	None	Open-source libraries	Medical data ML training
Any (Cir	Circuit)	Client-Server Distributed	Slow, const** scaling	Semi-honest Malicious	Ideally none	Distributed protocols	Auctions DNA analysis
Any qu	query	Client-Server	Slow, log scaling	Semi-honest Malicious	Side-channels	Secure processors	Signal ObliDB
Some que	queries	Client-Server	Fast, log access	Semi-honest	Volume size RAM patterns	Encrypted databases	MongoDB
Any qu Some que	query queries	Client-Server Client-Server	Slow, log scaling Fast, log access	Semi-honest Malicious Semi-honest	Side-channels Volume size	Secure processors Encrypted databases	

sues or the GitHub repository can be

7. Future Work

- Discuss more properties, such as live migration or physical attacks.
- Benchmarking framework among the five techniques to measure equal uses.
- Joining techniques with TEEs and test efficiency, security, functionality.

ons Whitepaper. Technical report. Intel Corporation. 2020. Accessed: 2025-05-2 , Nick Spinale, Gareth Stockwell, and Hugo JM Vincent. Confidential Computing—a Brave New World. In 202

nments. In Proceedings of the 19th ACM Asia Conference on Computer and Communications Security, pag