
Larger Dataset: Dataset is only n=250, because of 
technical issues. Further research needs larger datasets 
for better statistical confidence.

Dynamic Scenes: Models should be ran against more 
dynamic scenes that still avoid other confounders.

Cross-data Generalization: Benchmarking should be 
done against other pretraining too.
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Background Methodology
Optical Flow Estimation: 
● Critical for many computer vision tasks like 

autonomous driving an robotics.

Recent Developments:
● Integration of deep learning resulted in large 

improvements.

Knowledge Gap: 
● Models are generally benchmarked on synthetic 

datasets and datasets that indiscriminately combine 
confounders such as non-rigid motion, light 
changes, etc.

● Dataset needs to be generated and models 
benchmarked to verify improvements in space.

Tool Development:
● Developed a tool to annotate frames to create 

dataset, in existing (KITTI [2]) format.

Data Generation:
● Record suitable footage with large displacements.
● Sort into different categories (Fig 3 and 4)
● Annotate ground truth using tool (Fig 2)

Select Metrics:
● EPE, Fl-all and Accuracy
● Fl-all over distances and Distance-binned EPE

Model Selection:
● RAFT[1] as baseline, as it was SOTA in 2020.
● Models that have reported good performance on 

large displacements on other datasets.
● FlowFormer++, GMFlow, GMFlowNet, 

MemFlow, MemFlow-T

Evaluation:
● Evaluate pretrained models on relevant statistics
● Compare performance of models (Fig 5, 6)

Best Performance: MemFlow-T [3] outperformed 
competition by almost every metric. FlowFormer++ also 
performed quite well consistently (Fig 2 and 3).

Unexpected Results: On specific datasets, MemFlow 
performed better than MemFlow-T, so its vision 
transformer does not always improve results.

Data Sparsity: Because small (<10px) and extreme  
(>100px) displ. were not prevalent in (every) dataset, the 
statistics surrounding it have low confidence (Fig 3, 6)

Transformer-based architectures: These seem to 
result in large improvements for large displacements.
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Fig 4: Example Frames
          from Datasets
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