
Table 2: Metrics per selection type.

Out of all 450+
downloads, 32 users
programmed with
Python. The results of
the study can be found
in Fig. 2, Fig. 3, Table 1,
and Table 2.
 The Exact Match
metric shows that 62.5%
of selected suggestions
were unchanged by the
users and therefore,
accurate. Furthermore,
BLEU~4 [2], METEOR [3],
and ROUGE-L [4] are
metrics used for
evaluating natural
language. Lastly, the
Edit Similarity indicates
how similar the
suggestions were to the
verified suggestions.

Natural language processing
models grant computers the
ability to read, speak, and
understand human
languages. But, these
models are not limited to
human languages, and could
be expanded with abstract
syntax trees to understand
code and, in turn, predict
code.
 State-of-the-art models
have a theoretical accuracy
of 70% up to 4 token lengths
[1] when predicting source
code in a tailored
environment.
 This promised accuracy
makes code auto-
completion a highly sought-
after code extension as it
can make development
more efficient.

0. BACKGROUND

We created a plugin (VSC & Jetbrains) called "Code4Me".
Code4Me provides the developer with a suggestion
whenever a trigger point is typed or the keybind is used.
The plugin sends a request with 3992 characters of context
to the remote API and the server returns the a prediction
generated by the model. In this study the model UniXcoder
was evaluated. Then, Code4Me shows the suggestion and a
verification process starts. This line was sent back to the
server after 30 seconds and then compared to the original
suggestion.

3. METHODOLOGY

4. RESULTS
The performance of the
model when users select
the suggestion is good
with an exact match of
62.5% and high edit
similarity. This is
reflected by the opinion
of the users as shown in
Fig. 2.
 The overall scores are
lower than what is listed
in the findings by Guo et
al. [5] for UniXcoder, but
when a suggestion is
explicitly selected by the
user then scores surpass
their findings. Lastly, the
acceptance rate of the
model could be
improved by providing
multiple suggestions to
the user.

5. CONCLUSION

Jorit de Weerdt
j.c.h.p.deweerdt@student.tudelft.nl

A USER EVALUATION OF UNIXCODER
USING STATEMENT COMPLETION IN A REAL-WORLD SETTING

RQ1: What is the acceptance rate of suggestions from the
model when used by developers?
RQ2: How useful is the model from the perspective of its
users?
RQ3: How can the acceptance rate of the model be
improved for everyday coding use?

2. RESEARCH QUESTIONS
However, the only metrics
available to gauge the
effectiveness of an auto-
completion model are the
accuracy on test source
code and the potential
latency of the model. Many
state-of-the-art models have
high accuracy scores once
trained and evaluated on
their source code datasets.
But, this does not indicate
how well such a model
performs for a developer. A
model could have an
impeding inference time for
each auto-completion or it
might only suggest
straightforward predictions.
 Therefore, to properly
evaluate a model, the
interactions between the
model and the developer
have to be analysed in a
real-world setting.

1. PROBLEM

12.9%

[1] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code completion by jointly learning from structure and naming sequences,” Feb. 2022.
[2] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu “Bleu: A method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, Jul. 2002, pp. 311–318. DOI: 10.3115 / 1073083 . 107313
[3] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evaluation with improved correlation with human judgments,” in Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Mea- sures for Machine Translation and/or Summarization, Ann Arbor, Michigan: Association for Computational Linguistics, Jun. 2005, pp. 65–72
C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out, Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.
[5] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, Unixcoder: Unified cross-modal pre-training for code representation, 2022. DOI: 10.48550/ARXIV.2203.03850

Supervisor: Maliheh Izadi
Advisor: Georgios Gousios

Professor: Arie van Deursen

Table 1: Overall metrics.

Figure 3: Perceived accuracy by users.

Figure 2: Number of Selected Suggestions

Figure 1: Workflow

