
Erik Mekkes
Mekkes.Erik@gmail.com
e.j.mekkes@student.tudelft.nl

Evaluating Large Language Model Performance on User and Language Defined Elements in Code.

Supervisors: Jonathan Katzy, Maliheh Izadi Responsible Professor: Arie van Deursen Examiner: Azqa Nadeem

 Faculty of EEMCS - BSc Computer Science and Engineering
Sources:

[1] Xu, 2022, A Systematic Evaluation of Large Language Models of Code

[2] Wan, 2022, What Do They Capture? -- A Structural Analysis of Pre-Trained Language Models for Source Code

[3] Hellendoorn, 2021, The growing cost of deep learning for source code

C++

GoJava

The Stack - Deduplicated[5]

Python

phpScala many more...

Our evaluation dataset:
subset of 100k random files
from these 6 code languages.

"""
Docstring
"""
var_1 = 1
Comment
if var_1: exit()
 ...

Sample File

var_1 = 1
if var_1: exit()
if var_2:
 ...
if var_n:
 for x in items
 ...

Stripped Sample

 828,65,19,260,352,
 285,925,65,19,28,4322,336,
 285,925,65,20,28,
 ...
 285,925,65,80,28,
 209,446,754,353,5384,
 209,209,285,828,65,19,260,
 ...

Tokenized SampleRemove
 Comments

and
Docstrings

 ...
 285,925,65,80,28,
 209,446,754,353,5384,
 209,209,285,828,65,19,260,
 ...

Always guaranteed to have 2024
token length

PreProcessed Sample

Take Random
Subsection

of 2024 tokens

BPE
Tokenize

We select the 400M parameter PolyCoder [1] version
as to evaluate, a GPT2-based, decoder-only
transformer with 24 layers and 16 attention heads.

 PolyCoder's internal dimensions support up to 1024
tokens, which is also the sequence length it is trained
on. We use 1024 length sequences as input for ideal
predictions, making 1000 predictions per sample.

PolyCoder Training : 24M files

 Language Repositories Files

Java 15,044 5,120,129
C++ 13,726 4,289,506
Python 25,446 1,550,208

Go 12,371 1,416,789
Julia - -
Kotlin - -

Remaining 12M files across:

C, C#, JavaScript, PHP,
TypeScript, Ruby, Rust, Scala

Python

Java

C++

Go Kotlin

JuliaPython

Java

C++

Go

Selected Model, Evaluation Dataset, and Pre-Processing Steps to Prepare Samples

Select only
files >= 2024

tokens

We wish to evaluate performance
outside it's training set as well !

Interest in Large Language Models (LLM) of code has led to
many new models and innovations in the evaluation of LLMs[1]

and their ability to learn the structural syntax of code[2].
However, a trend to reach new levels of performance is to rely
on scaling up in model size and training data[3]. This trend is
accompanied by significantly increased costs and loss of
accessibility, and might at some point reach its limits.
 We should look at other avenues of improving performance
to mitigate this trend, as such we apply recently developed
techniques to inspect the internal state of LLMs and contribute
a method to evaluate specific aspects of Programming
Languages that relates performance to their dimension size.

Background: Transformer Dimensions
 Transformers improve on Recurrent Neural Network
architectures with the self-attention mechanism, adding parallel
processing of the positional meaning of tokens in an input[4]. This
results in a fixed maximum Input Sequence Length.

 Fixed dimensions in transformers ensure matching inputs and
outputs that allow blocks of operations to be repeated. Current
models apply layered Encoder and Decoder block architectures.
We focus on the Decoder type as these are best for tasks that
involve next-token predictions. This is a relevant topic to us due to
its application in Code-Completion.

 The number of layers and maximum input length dimensions
are key design choices for a Model as they are trade-offs between
computational cost and the quality of predictions: We are
interested in how much each layer and its contents contributes to
accuracy.

Research Question: How do user-defined elements
compare to language-defined elements with regard to the
depth of the first correct prediction?
Hypothesis:
Language-defined elements require significantly fewer layers
due to their well-defined structure and meaning.

Recent Development: Tuned Lens Translation
Internal layer states do not directly translate to outputs that we can
evaluate due to shifts in representation between layers, the model is
only required to return a meaningful representation in the last layer.

A Tuned Lens[6] is an early-exiting technique with a learned
translation. This translation is trained on minimizing the Kullback–
Leibler (KL) divergence between the final layer output state and for
any layer x:

state_layerx * learned_change_of_basis + learned_bias

Applying this learned translation returns a representation that allows
accurate inspection of what the model is predicting in internal layers.
This is illustrated on the left side of Figure 1 below.

Figure 1: GPT2 Architecture with Tuned Lens Translation Recent Discovery: (Null) Attention Patterns in Attention Heads
Each layer within the GPT2 Transformer architecture makes use of a
multi-head attention sub-block as depicted on the right of Figure 1.
This is another development facilitated by adding positional encoding.

 For a sequence with n input tokens, each head constructs an n x n
matrix of attention weights that signifies the relevance of each token
to the current attention head.
 It has been shown that using such attention weights leads specific
attention heads to form patterns that relate to structural aspects of
language[7]. Multiple head attention allows the model to focus on
separate aspects of code language simultaneously during each layer.

It has also been shown that a concept of null attention exists, which is
defined as heads defaulting to placing attention weight on the first
token when no tokens in the sequence are relevant to a head. An
example of this occurring is shown to the left in Figure 3.

Layer X

Figure 2: Multi-Head Attention in a Decoder Subblock using BertViz

head 0 head n

...

head 1 head n-1

Figure 3: Null Attention in a PolyCoder Attention Head using BertViz

Definition of Metrics

Corresponding sum of attention
weight per token index, high attention

weight on first: idle head

Prediction Accuracy per layer : Average Depth of First Correct Prediction
To compare performance for token types across layers we are particularly
interested in how early a model is able to predict correctly, as this relates to size
and computational cost.

The earliest correct prediction alone is not a great indicator, the model is likely to
switch between choices while the probability is low. We define Depth of First
Correct Prediction as the first layer in which a token was predicted correctly
without it changing in later layers as shown below

User and Language Defined Elements: Labelling Token Types
Language-defined elements refer to Keywords, Operators and Separators that are
reserved by the language, these elements have a very specific immutable
meaning within a language. We consistently show these as green in the results.

User-defined elements refer to identifiers, words chosen by the writer to refer to
elements like functions or variables. These have no pre-defined form or function
and ore often new to the model. We consistently show these as yellow in results.

We hypothesized that if these distinctions between user and language elements
exist, they should also be present in the internal representation of LLMs and
should have different performance characteristics that we can observe to learn
about model behavior and possibly use to our advantage.

Figure 4: Depth of First Correct Prediction

Defining and labelling User- and Language-Defined Elements

Results of Evaluating Prediction Performance Results of Evaluating the Focus of the Attention Mechanism

We compute the Depth of Average First Completion for 200k Token predictions per language and plot the
distribution as a box plot per Language and Element type in Figure 5. As Operator and Separator tokens
occur frequently and consistently and skew the results, we also plot the Keyword group separately.

 We immediately see a clear and well-defined 2-layer advantage for language-defined elements. We note
an increased variability in Strict Keyword Elements (blue, fewer occurrences in samples) and strong
fluctuation in user-defined element performance.

To look for explanations, we look at the relative performance of specific tokens of interest.. For language-
defined elements, we select common keywords defined for all languages, for user-defined elements we
select common variable names.
 We plot the performance of 8 Tokens of Interest in Go and Java below in Figure 6 and 7. The results for
individual tokens confirm our element group results. We find similar medians in all languages but with
inconsistency due to token sample sizes, language characteristics, and token classification accuracy.

 We select the 'else' and 'start' tokens for further attention mechanism analysis, they have similar sample
occurrences and low variability which gives us a fair comparison of their attention behavior.

We label language-defined
elements according to the
official specification of each
language, remaining elements
are labelled as user-defined.. Figure 5: Distribution of Average Depth of First Correct Predictions Across Language and Element TypesElement Type Distribution,

200k Tokens per Language

Figure 6: Prediction Performance for Tokens of Interest in Go

Figure 7: Prediction Performance for Tokens of Interest in Java

We use summed weight on the first token to define when a head is idle. This distribution of
weight is challenging for higher input sequence sizes, we therefore only classify a top 5%
first token summed weight as a null head. We show the fraction of Null Attention Heads per
layer for 'else' (language-defined) and 'start' (user-defined) tokens for Java (Figure 8) and
Go (Figure 9). We used an equal number of samples (n=60) of each.

 The results show that a greater fraction of heads (+7\%, 2-3 fold increase) is unable to
contribute to later layers of user-defined element predictions. A loss of contributing heads in
higher layers relates to less early predictions. However, this is only a partial explanation as
neither element sees null attention in the earlier layers where we identified a high degree of
accuracy progression.

 We consider the absence of earlier layer null heads as evidence that the earlier layer
heads have a more general purpose: they see relevance in either type. From the
performance difference, we infer that these more general-purpose heads must be
significantly better at resolving language-defined elements.

Figure 8: Fraction of Null Attention heads in Go per Layer

Figure 9: Fraction of Null Attention heads in Java per Layer

We see a very clear 2 layer performance advantage for
Language-Defined elements over User-Defined elements.

This difference is consistent across languages, even outside
the training set.

 This technique of observation can be further refined by
checking performance with comments in code and by
improving the token classification methods.

 For specific high-occurrence language-defined Tokens
such as Operators, we observe an even greater difference in
performance. If such a token type can be identified early, this
can allow early exiting techniques to gain performance
without loss of significant accuracy.

[4] Vaswani, 2017, Attention Is All You Need

[5] Kocetkov, 2022, The Stack: 3 TB of permissively licensed source code

[6] Belrose, 2023, Eliciting latent predictions from transformers with the tuned lens

[7] Vig, 2019, Analyzing the Structure of Attention in a Transformer Language Model

Code on GitHub: Datasets on HuggingFace:

