
4. Embeddings

 Modelling cyclic structures in Agda
 Evaluating Agda’s coinduction through modelling graphs

1. Motivation

2. Background

3. Research question

Sub-questions

5. Experiments 6. Improvements to Agda

7. Conclusion and future work

• Graph theory plays an important role in a multitude of different

fields such as, but not limited to the field of chemistry, sociology,

biology, operations research and even war science and is widely

used in computer science as well.

• Various graph representations exist: a popular approach is through

an inductive way.

• Cycles occur in graphs → Inductive approach becomes less

intuitive.

• Solution: the dual of induction, coinduction, which is not as well

researched.

Properties of graphs:

• isPresent: when provided a node and a graph, it checks if the node

is present in the graph.

• hasPath: when provided a start node, an end node and a graph, it

checks if the end node can be reached from the start node in the

graph.

• hasCycle: when provided a graph, it checks if the graph contains a

cycle.

Agda:

• Functional language

• Total language: all functions must terminate.

• Dependently typed: types can be indexed by objects of other

types.

→ Agda can be used as a proof assistant.

• Coinduction: Agda has three flavours of coinduction, guarded

coinduction, musical coinduction and sized types.

How can graphs be modelled coinductively in Agda such that they are

suitable for the proof assistant?

1.What are different encodings of graphs in Agda and which are

suitable for the proof assistant?

2.What properties of graphs can be proven using the various encodings

(e.g. has node)?

3.What improvements should be made to Agda in order for it to handle

modelling with coinduction more easily?

Guarded Musical Sized Types

isPresent ✓ ✓ 

hasCycle ✓ ✓ 

hasPath ✓ ✓ 

Author: Faizel Mangroe (5566541)
 F.Mangroe@student.tudelft.nl
Professor: Jesper Cockx
Supervisor: Bohdan Liesnikov

Sized Types
Adjacency list

Musical
coinduction

 data Node : Set where
 g : ℕ → (List (∞ Node)) → Node

 record Node : Set where
 coinductive
 constructor g

 field
 cur : ℕ
 adj : List Node

Guarded
coinduction

• The encodings using guarded coinduction and musical coinduction were successful.

• The sized type encodings were not successful, due to a lack of understanding and time.

• Even though musical coinduction is deprecated, it seems to give the most power.

Future work:

• The use of sized types for modelling coinductive graphs can be further explored.

• Assessing the capabilities of the musical variant compared to the guarded version.

• The documentation of Agda does not provide enough information.

→ Difficult to get started with new concepts.

• The error messages in Agda are oftentimes too vague

→Cumbersome debugging experience.

	Slide 1

