Graph Neural Networks for Long-Term Traffic Forecasting

Can GNNs effectively handle long-term predictions and how does their accuracy degrade over time?

Author: Vlad-Gabriel Vrânceanu

(V.G.Vranceanu@student.tudelft.nl)

1. Introduction

Definitions: Traffic forecasting deals with predicting the volume or speed of traffic in a road network. **GNNs -** Graph Neural Network: Graph neural network refers to any neural network working on the graph data.[1] **Long-Horizon Forecasting -** 10 hours ahead of the current time. It encompasses the working day of an average person in California (2 hours max for commute[2] and 8 hours average working day[3]).

2. Subquestions

- 1. Does the **performance** of the GNN noticeably **degrade** at specific points in time during long-term traffic forecasting?
- 2. Do fluctuations in traffic volume/speed contribute to the decline in the GNN's performance for long-term traffic forecasting?
- 3. Are there specific configurations of road networks (e.g. straight roads, multiple intersections) that **contribute to the decline in** the GNN's **performance** for longterm traffic forecasting?

Road network configuration results

Subset			
Straight Road - 35 nodes			Ι
One Intersection - 20 nodes			
Two Intersections - 40 nodes			l
Three Intersections - 55 nodes			
Subset	Mean	Var.	İ
Subset	Mean	Var.	
Subset Straight Road	Mean 56.23	Var. 226.08	
Subset Straight Road One Intersection	Mean 56.23 53.84	Var. 226.08 213.17	
Subset Straight Road One Intersection Two Intersections	Mean 56.23 53.84 55.55	Var. 226.08 213.17 190.75	

5. Results

MAE 7.53 7.78 6.29

10.15

Figure 6. Subsets and their MAE values at epoch 320 averaged over 120 horizons.

Std. Dev. Missing Values % 14.16 7.54 14.22 7.8 13.21 7.44 6.96 8.92

Figure 7. Subsets and their mean, variance, standard deviation, and # zeros.

767350

Supervisor: Elena Congeduti

6. Conclusions

Interpreting the results:

- Logarithmic growth for average error in prediction until timestamp 80 as seen in *Figure 3*. It didn't continue as the model needed more training, which would lead to overfitting.
- Fluctuations in traffic speed contribute to the degradation of predictions, as seen in Figures 4 and
- It is inconclusive if **specific road network configurations** have an impact on GNN performance
- Future Work:
- Build **isolated subsets** to concretely answer the **third sub-question**
- Redo the experiments with **datasets** that record **traffic volume**
- Use datasets that are recorded on roads different from highways.

7. References

[1] L. Wu, P. Cui, J. Pei, and L. Zhao. Graph Neural Networks: Foundations, Frontiers, and Applications. Springer, Singapore, 2022

2]**URL:**<u>https://fred.stlouisfed.org/series/B080ACS006037</u> [3]**URL:**<u>https://www.bls.gov/sae/tables/annual-</u>

average/table-3-average-hours-and-earnings-ofproduction-employees-on-manufacturing-payrolls-by-

state.htm

[4] Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Christian S. Jensen. Decoupled dynamic spatial-temporal graph neural network for traffic forecasting,2022.