. Introduction

Reinforcement Learning?

- Agent interacts with environment (robot, game, etc.)
- Takes actions \rightarrow Gets rewards \rightarrow Learns better policy
- Problem: What if interaction is dangerous/expensive? • e.g. Medical treatment decisions, Autonomous vehicles, Industrial control systems

2. Offline RL

- Learning from Pre-Collected Data **Offline RL Solution:**
 - Train policies from existing datasets
 - No live interaction needed
 - Use historical data (logs, previous experiments)

Current State-of-the-Art:

- Complex ensemble methods (e.g., GBDT: 1000+ trees)
- High performance but complete black boxes

3. The Interpretability Problem

Why This Matters for Critical Applications The Dilemma:

• High Performance: Complex ensembles \rightarrow Opaque decisions

• Interpretability: Simple models \rightarrow Explainable but weak? Example:

Healthcare: "Why did the AI recommend this treatment?"

Our Research Question: What are the interpretability-performance trade-offs when using CART trees for offline reinforcement learning compared to GBDT ensembles?

4. Our Approach

Offline RL as Supervised Learning

Offline RL as Regression: Input = (State, Return-to-Go, Timestep) Output = Action

Models Compared:

- **XGBoost:** Ensemble (1000 trees)
- CART: Single tree (interpretable when small / medium)
- M-CART: One tree per action

Interpretability Tiers: CART: Small/Medium (interpretable) to Large/Unbounded. M-CART: Small/Medium/Large.

Decision Trees vs. Ensembles in Regression-Based Offline RL Interpretability-Performance Trade-offs and Return-to-Go Effects

Rareş Polenciuc – R.Polenciuc@student.tudelft.nl Supervisors: Dr. Anna Lukina, Daniël Vos EEMCS, Delft University of Technology, The Netherlands

Return-to-Go Effects

Behavioral Fragility with RTG:

• Small ρ shifts \rightarrow abrupt, erratic performance changes. **Implications for Interpretability:**

- dynamic RTG.
- actions with ρ variations.

What This Means for Interpretable AI

- **Broader Impact:**

Next Steps

- Alternative conditioning signals
- Hierarchical decision structures
- **Ultimate Goal:** Auditable RL for critical applications

CSE3000 Research Project

7. RTG Sensitivity

Figure: Tiny RTG changes = huge action differences.

• CART policies: high sensitivity to RTG input (ρ).

• Traditional DT interpretability (fixed state \rightarrow fixed action) is broken by

• Key Takeaway: Requires full RTG tracing; same states \rightarrow different

8. Key Takeaways

a. **Performance vs. Interpretability:** Fundamental trade-off.

b. Complexity: Good performance needs non-interpretable complexity **RTG Problem:** Dynamic inputs break traditional interpretability

• Simple model architecture \neq interpretable behavior Need new approaches for truly auditable AI systems

9. Future Work