
A Study of Bugs Found in the Moby Configuration Management System

Open framework by Docker (but it's NOT Docker).
Allows the creation of secure container systems [1].

Understand complex software systems.
Improve detection, prevention and software quality.
Many methodologies already researched [2, 3, 4].

Expand existing methodologies to configuration
management systems.
Provide container systems perspective to research.

What is Moby?

Why studying bugs?

Why this research then?

What are the symptoms of these bugs?

What are the root causes of these bugs?

What is their impact?

How do developers fix these bugs?

Are these bugs system dependent?

What triggers these bugs?

1.

2.

3.

4.

5.

6.
[1] Moby. Moby project, 2017
[2] Wang Y., et al. An empirical study of multi-
entity changes in real bug fixes. pages 287–
298. IEEE, 9 2018.
[3] Y. Zhao, et al. Towards an understanding
of change types in bug fixing code.
Information and Software Technology, 86:37–
53, 2017.4
[4] Stefanos Chaliasos. Well-typed programs
can go wrong: A study of typing-related bugs
in jvm compilers. 2021.

Images: Moby, TU Delft, GitHub, Material
Icons, FA Icons, Canva, Own work.

Research Background: What and Why?

Research Questions

Research Methodology

Research Results

Conclusion and Further Work

1 3

4

5 References

Programming Errors

Configuration Errors

Algorithmic Errors

Logic Errors

Linux

Windows

MacOS

Symptoms: misleading reports, containers errors and
dependencies errors. Mostly linked to a certain root cause.
Root Causes: faulty dependency configuration, errors reporting,
containers and core functions run-time.
Impact is generally high and mostly results in: wrong targets
configuration and logging problems.
Fixes involve small changes in branch and assignment statements.
They focus on execution components the most.
Balanced split of system dependent and independent bugs.
Triggers: errors in configuration and logic. Lack of test cases
requires specific instructions and setup to reproduce bugs.

Insights and Takeaways
1.

2.

3.

4.

5.
6.

2

Pick a random sample of 100 bugs
Define categories for bugs and fixes
Identify symptoms and root causes of bugs
Identify impact and fixes of bugs
Define system dependency and triggers

Step 2: Analyze Bugs Data
1.
2.
3.
4.
5.

Responsible Professor
Prof. Dr. Ir. Diomidis Spinellis - d.spinellis@tudelft.nl

Author
Mattia Bonfanti - m.bonfanti@student.tudelft.nl

Supervisor
Thodoris Sotiropoulos - theosotr@aueb.gr

Filter issues and pull requests to find bugs
From 21378 issues to 2539
From 22079 pull requests to 2539

Keep only bugs with a fix, from 5078
entries to 2285

Step 1: Create Bugs Database
1.

a.
b.

2.

Get issues and
pull requests
from GitHub

Filter results using
keywords and

synonyms

Clean data and
keep only bugs

with a fix

Store data
in database

Group similar bugs based on
category, areas and fixes
Identify common patterns
Broaden the focus and draw insights
and main takeaways from the results

Step 3: Find Patterns
1.

2.
3.

Store data
in database

Pick random
sample from

bugs database

Define categories
for bugs and

fixes

Identify bugs
categories to answer
research questions

Group
similar bugs

Identify common
patterns

Find insights
and

takeaways

Get the
paper!

Get the
code!

Symptoms & Root Causes
Distribution shows how symptoms

(y-axis) relate to specific root causes

Impact & Consequences
Impact is mostly high and affects

configuration and logging

Fixes
Fixes affect small amount of lines of

code. Focus on specific components.

System Dependent Triggers

24.3%

30.8%
28.1%

16.8%

75%

21.2%

3.8
%

Improve keywords filtering to find bugs in GitHub
by looking at the bugs reports as a whole rather than
finding only specific terminology.
Develop a dedicated test suite leveraging the
patterns between symptoms and root causes to
prevent and reduce the most common bugs.
More structured and stricter contribution
workflow to Moby. Test cases should be mandatory.
Develop a tool to overview the history of bugs in
Moby. Developers can use this to avoid bug patterns
to appear again after major refactoring.

What is Next?
1.

2.

3.

4.

mailto:D.Spinellis@tudelft.nl
mailto:theosotr@aueb.gr

