
Evaluation of geo-distributed databases using the DeathStar Hotel Reservation benchmark

1. Introduction

2. Research Question

2. Background

4. Experimental Setup

Geo-distributed database: A large database composed
of multiple databases spread across large physical
distances.
Database benchmark: A method of comparing database
performance using a simulated workload.
DeathStar[1] Hotel Reservation: A benchmark which
aims to represent a modern travel booking application.

Research Question: How do geo-distributed database
systems perform when benchmarked using the
DeathStarBench hotel reservation scenario?

This evaluation will be done under several scenarios,
namely:
 - Baseline
 - Skewed
 - Sunflower

 - Network delays
 - Packet loss
 - Scalability

Performance will be measured using the following
metrics:
 - Throughput
 - Latency

 - Bytes transferred
 - Cost

8. References

5. Results

7. Limitations

6. Conclusions

Database benchmarking is important to determine the
strengths and weaknesses of a system before deciding
on it's use.

Traditional benchmarks may no longer be representative
of modern workloads, creating a mismatch between
expected and actual performance, especially for geo-
distributed databases.

This project and the others in the group aim to implement
several benchmarks in an appropriate environment for a
comparison of some modern database benchmarks.

Which geo-distributed databases will be measured:
 - Detock[2]
 - Calvin[3]

 - SLOG[4]
 - Janus[5]

Author: Aidan Eickhoff
Supervisors: Oto Mráz, Asterios Katsifodimos

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian
Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen,
Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and
Christina Delimitrou. An open-source benchmark suite for microservices and their hardware-software implications
for cloud & edge systems. In Proceedings of Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, page 3–18. ACM, April 2019.

[2] Cuong D. T. Nguyen, Johann K. Miller, and Daniel J. Abadi. Detock: High performance multi-region transactions
at scale. Proceedings of the ACM on Management of Data, 1(2):1–27, June 2023.

[3] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin:
fast distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD/PODS ’12. ACM, May 2012.

[4] Kun Ren, Dennis Li, and Daniel J. Abadi. Slog: serializable, low-latency, geo-replicated transactions.
Proceedings of the VLDB Endowment, 12(11):1747–1761, July 2019.

[5] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency control and consensus for
commits under conflicts. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pages 517–532, Savannah, GA, November 2016. USENIX Association.

users
PK username

password

hotels
PK hotel_id

latitude
longitude
rating
price
capacity

reservations
PK reservation_id
PK + FK hotel_id

customer_name
in_date
out_date
num_rooms

reservation_cnt
PK in_date
PK + FK hotel_id

reserved_rooms

5. Results (cont.)

The baseline scenario
with large transactions.
Calvin and Janus stay
constant, and are
significantly more cost
efficient for high values

The baseline scenario
with small transactions.
Detock and SLOG keep
an advantage for longer.

The skew scenario.
Performance is not
significantly affected.

The sunflower scenario.
Performance is not
significantly affected.

The network latency
scenario. Performance
drops quickly. Calvin
outperforms the others.

The packet loss scenario
has results similar to the
network latency scenario.
Performance drops
quickly and Calvin
outperforms the others.

The scalability scenario.
Throughput increases
until fully saturated. At
this point, it stagnates
and latency, bytes, and
cost increase.

Latency breakdown with
small transactions. More
time is spent coordinating,
rather than idle.

Latency breakdown for the
baseline scenario with large
transactions.

We can draw three main conclusions from this data:

 - Detock and SLOG perform better when there are few
multi-home transactions

 - Calvin and Janus perform consistently, and are best
when there are many multi-home transactions.

 - Calvin is the most cost-effective and performs best in
poor network conditions.

Future work:
 - Add more databases.
 - Evaluate the effect of multi-partition transactions on
performance.

P0
P1

P0
P1

R0

R1

The main limitations of this work are the following:
 - Client number may be too high and impacting latency.
 - Latency breakdown is not detailed enough.
 - DeathStar hotel benchmark does not have enough
contention for skew or sunflower.
 - Cross region latency is too low (not accurate simulation
of real database configurations).

