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01 Introduction
Proposed metric: Observation! All of the denied inversions
Multiple methods to generate attack graphs, but how to choose the easiest to interpret? were denied because of the high similarity
] = : + : : of the attack graphs, and not as a result of a
= o0 wrong ranking.
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By measuring the average interpretability
between attack graphs resulted from an suffix-

Intrusion allerts Attack graphs based probabilistic deterministic finite
automaton (S-PDFA), a Markov chain, and a suffix
04 Resu\ts tree, we receive comparable results:
Dataset S-PDFA | Markov Chain | Suffix Tree
02 M ethOdO ‘ Ogy Similar ranking results with the baseline CPTC-2018 | 0.727 0.743 0.790
Leverage user-experience-related concepts [2] to quantify interpretability as cognitive load: metric CPTC-2017 | 0.679 0.669 0.632
Rankings based on the two metrics shown a high
level of similarity when measured using Kendall Reultg shows that attack graphs generated from
H AQ® L a suffix tree are the most interpretable among
T DA e Corelance Coefficient: .
HAQ Slml\arlty o COntlnLth the 3 specified methods.
HAQ® Similar elements are visually grouped. The human eye will follow the smoothest path. Dataset Kendall Coefficient Important! This statement is confirmed by
| | | 5 | CPTC-2018 | 0.931 the expert's opinion gathered in a group
Exploit ’Fhe usage of popular patterns in attacker Quantify ’Fhe ability to easﬂy follow a path. CPTC0T7 10860 discussion between members of Group 5
strategies. Intersecting edges results in paths harder to follow. '

. . . _ _ ) _ CSE3000-Research Project 20283.
Cluster nodes based on prior probabilities of being Solution: Graph maximal planarity metric.

in the same attack path. Rank 1 Rank 2
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05 Conclusion

inversion

.

- Maximal planarity affect the interpretability.

. The new metric presents similar results with
the baseline in terms of pariwise compaison
and ranking.

. The new metric addresses discrepancies
detected by experts in the baseline ranking.

[2] Cameron Chapman. Exploring the gestalt principles of

‘ ‘ Elements tend to be grouped if they are design. Toptal.

close to each other.
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ldentify most central nodes using betweeness

centrality. Figure 1. Inversion between two rankings.
Quantify the connectivity inside a cluster between

central nodes and the rest of the nodes. C :
However, the majority of rank inversions in the 06 I—I mitations

new ranking was considered benefic and

accepted by the expert opinion as in Figure 2.

fria a subjective topic.
E .hI‘-_| . Author . The cluster algorithm requires prior

. The quantification of interpretability remains
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