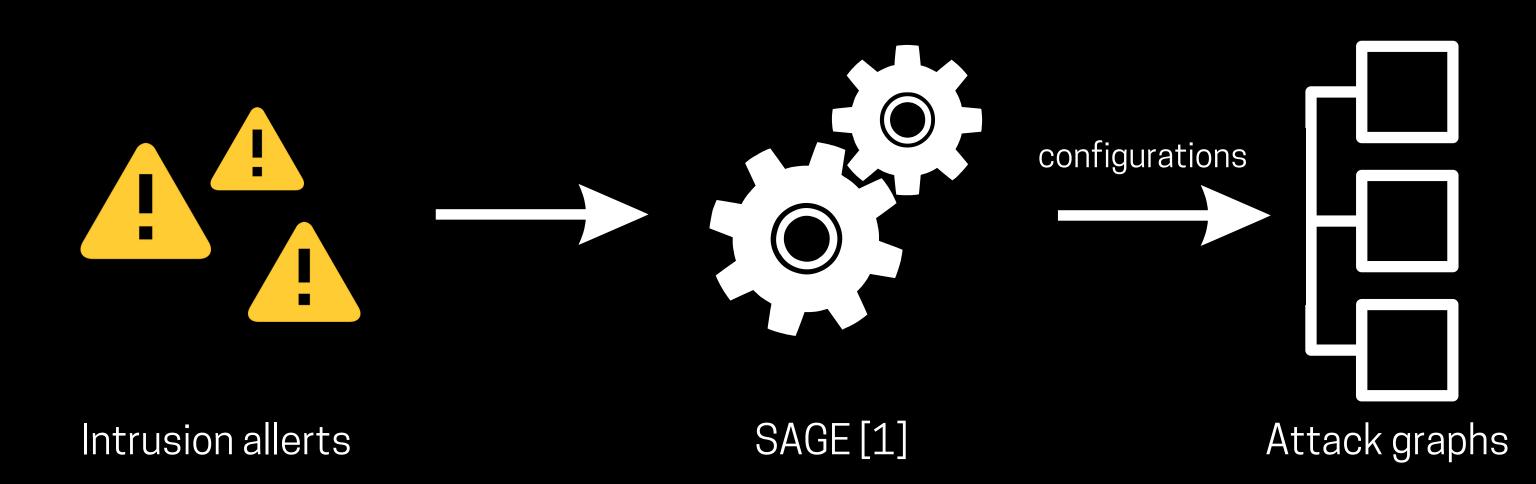
Investigating the modeling assumptions of alert-driven attack graphs

A cognitive load-based quantification approach of interpretability in attack graphs

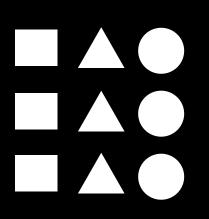
01 Introduction

Multiple methods to generate attack graphs, but how to choose the easiest to interpret?



02 Methodology

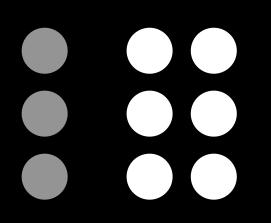
Leverage user-experience-related concepts [2] to quantify interpretability as cognitive load:



Similarity

Similar elements are visually grouped.

Exploit the usage of popular patterns in attacker strategies. Cluster nodes based on prior probabilities of being in the same attack path.



Proximity

Elements tend to be grouped if they are close to each other.

Identify most central nodes using betweeness centrality.

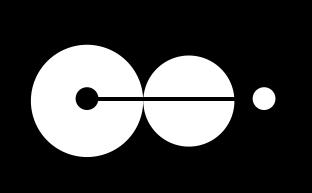
Quantify the connectivity inside a cluster between central nodes and the rest of the nodes.

uthor

Vlad-Mihai Constantinescu Email: V.Constantinescu@student.tudelft.nl

Supervisors

Sicco Verwer



Continuity

The human eye will follow the smoothest path.

Quantify the ability to easily follow a path. Intersecting edges results in paths harder to follow. Solution: Graph maximal planarity metric.

References:

[1] Azga Nadeem, Sicco Verwer, and Shanchieh Jay Yang. Sage: Intrusion alert-driven attack graph extractor. In Symposium on Visualization for Cyber Security (Vizec). IEEE, 2021.

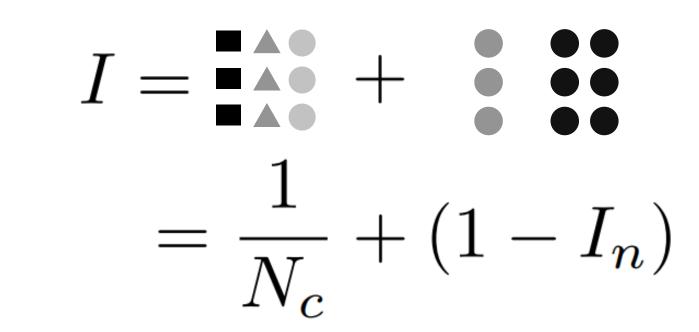
[2] Cameron Chapman. Exploring the gestalt principles of design. Toptal.

Denied inversions

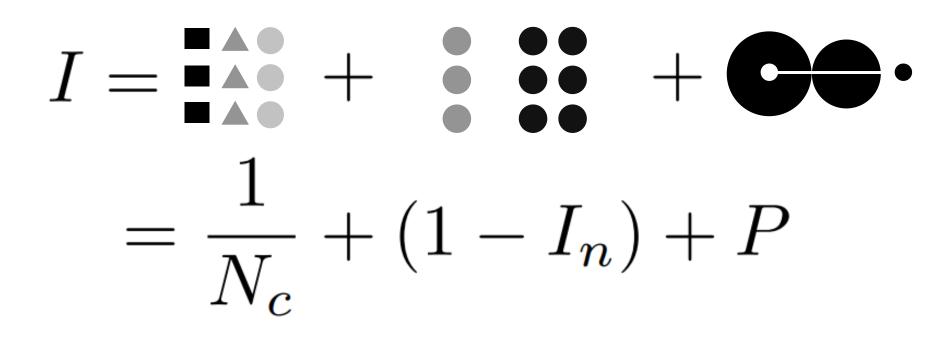
25%

03 Interpretability metric

Baseline metric:



Proposed metric:



04 Results

Similar ranking results with the baseline metric

Rankings based on the two metrics shown a high level of similarity when measured using Kendall Corelance Coefficient:

Dataset	Kendall Coefficient	
CPTC-2018	0.931	
CPTC-2017	0.869	

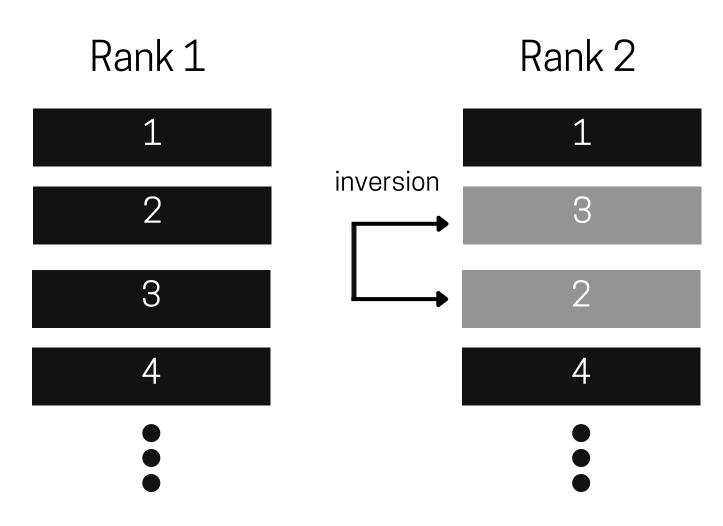


Figure 1. Inversion between two rankings.

However, the majority of rank inversions in the new ranking was considered benefic and accepted by the expert opinion as in Figure 2.

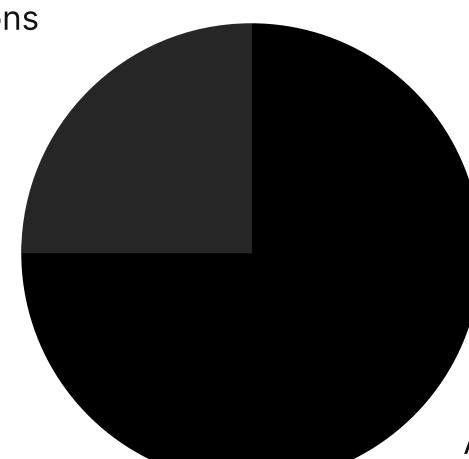
Comparable results among among various generation strategies

By measuring the average interpretability between attack graphs resulted from an suffixbased probabilistic deterministic finite automaton (S-PDFA), a Markov chain, and a suffix tree, we receive comparable results:

Data CPT CPT

• Maximal planarity affect the interpretability. • The new metric presents similar results with the baseline in terms of pariwise compaison and ranking.

• The new metric addresses discrepancies detected by experts in the baseline ranking.



Accepted inversions 75%

Figure 2. Manual analysis of inversions in CPTC-2018 and CPTC-2017 datasets.

Observation! All of the denied inversions were denied because of the high similarity of the attack graphs, and not as a result of a wrong ranking.

aset	S-PDFA	Markov Chain	Suffix Tree
ГС-2018	0.727	0.743	0.790
ГС-2017	0.679	0.669	0.682

Reults shows that attack graphs generated from a suffix tree are the most interpretable among the 3 specified methods.

Important! This statement is confirmed by the expert's opinion gathered in a group discussion between members of Group 5 CSE3000-Research Project 2023.

05 Conclusion

06 Limitations

• The quantification of interpretability remains a subjective topic.

• The cluster algorithm requires prior knowledge.

• The proposed metric leverages only 3 our of the 7 Gestalt principles.