CROSS-LINGUAL PERFORMANCE

OF CODEGPT ON THE CODE COMPLETION TASK

Nadine Kuo
h.n.kuo@student.tudelft.nl

Supervisors: Maliheh Izadi, Jonathan Katzy
Professor: Arie van Deursen

1. Introduction

» Code intelligence tools such as GitHub Copilot have significantly enabled developers to enhance productivity and efficiency [1].
o These tools are based on Large Language Models (LLMs) that have been trained on source code in order to perform programming-related

tasks including code completion.

» However most of these models are trained on merely widely-used programming languages, which may limit the performance on low-resource

languages.

e This also means there is limited research on performance of code models on low-resource languages, inspiring us to....

investigate how the GPT-2-based Transformer CodeGPT performs on the token-level code
completion task across high- and low-resource languages.

/ \

*

—————

(¢) .
=Ralcl K |

ulé

Note that our multilingual CodeGPT model was fine-tuned on: Java, JS, Python, PHP, Go and Ruby. These will be indicated by *.

N—————

3. Results

Best and Worst Predictions

Figure 3: Confidence of False Predictions

Best

e Kotlin, Go: mostly user-defined elements
o Reliance on inherited natural language understanding through GPT-2
o Endings of conjunctions are trivial due to uni-directional architecture

e Java, Python, C++ and Go: also contain common code structures and language-specific elements

2. Research Questions & Methodology

RQ1: When does CodeGPT generate
incorrect tokens with high confidence
("worst" predictions)?

RQ2: Cross-lingual patterns in
CodeGPT's attention
mechanism?

Pre -processing

Lens Experiment

Attention Experiment

Filter out files with 1 1
< 1024 tokens 1 Run CodeGPT I

Store token predictions

] 1

1 I

I [

I | | 1]

: Tokenize code i : qﬁ per layer : i Gather attention Assess null i

1) heads for bestand ~attention ratios |

1] 1 worst [,Dkens dCross la“guages I

Source code | Remove i :
! [

1 I

¥ A I Tuned Lens to obtain o=} Evaluate Ui i
files comments Take random slice for files ¥ ppdx el <SS o o7, prcdictions_'-'_h g:g!
- - - 1 -by- o= I -
\ with > 1024 + C tokens S PREiCions LAyET=Dy=IAVE 3 K

60
Java Worst
2 201 "Python X : -
-; Cad e Kotlin, Go: beyond punctuation , also common code structures and language-specific elements |
2 40 . e Java, Python, C++ and Go: structures for which left-context is not sufficient, including punctuation
a Go Left-skewed: large proportion of
o i -
. Kotlin
E 30 . false predlc.tlons have low *Java | *Python C++ | *Go | Kotlin | Julia
o . Julia confidence. Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst
& 20 1 —— get } self def : } x } get } 1 end
o orst” ; public s I x if : or s return § 1
& 10 4 predictions < return get class get { n 7 qual if 2 2
IJ I | | als if ® : n -> for ! s get t @
0 lr_l PP S I_ A\ @ 1 = V] return n < ator " [L
1 2 3 4 5 6 10 11 12 Exception VK kot if 1 #] case n get ices 5
String private n @ s iF son < els i [[
Depth of Generated Predlct|on (False) or ASEETE y [iRE GaSE s is point get - {
of this format 2 or void n java il function] else
adata { args 0] r log ert to els var estamp]
Figure 4: Confidence of Correct Predictions Table 1: Top-10 tokens predicted tokens with highest confidence
60
“lava
= 907 “Python Null Attention Patterns
3 Y
> . Middle Iayers contribute most Em C++
5 U GEIPULANG) E = SHErs [2] “Go o Distributions of confidence of correct predictions (Figure 4) and magnitude of null attention (Figure 5)
= a a
E’ 30 - Kotlin align with each other. I
r . Julia » _ . . .
> 204 "Best" e Performance (Table 2) correlates positively with magnitude of null attention ratios (Table 3).
< predictions
r 10 | | e Model confidence correlates positively with variance of null attention across model layers (Table 3).
0 l[-l so—sa gn cn & “ | | LI i e Magnitude and variance of null attention
1 2 3 4 5 6 7 8 10 11 12 are similar between: . : _
Depth of Generated Prediction {Correct) o Best and worst predictions Figure 5: Overall Null Attention Ratios by Layers
o Token categories -~ 01 01 01 01 01 01
14
o~ 0.2 0.2 0.2 0.2 0.2 0.2
® 1.0 1.6 0.8 0.3 1.2 1i5 12
Mean + SD Mean = SD
EM (%) | MRR (%) x in confident setting <t 2'5 1.4 2.1 2.0 1.6 2.8 o g
* 1.1 1.4 1.8 57 1.8 1.5 o
*Java 692 16.9 Java 9.3+38 10.3+8.7) s v Y o o s
* n O ¢ b ls o 3 L
*Python| 682 147 Python| 89+34 82+79 % \r r v v . i 8 é
P~ . - - H - . c
C+t 645 "6 C++ 9.2+35 93193 | i — — s e 5
* =2] 8.6 . . . L
*Go 679 124 Go 9.1+31 8.6+ 8.1 =
: o =
Kotlin 583 n8 Kotlin 82+27 78176 w
. o
Julia 650 12 Julia 77+27 8.6 +9.7 =
s —
Table 3: Null Attention Ratio Statistics over
Table 2: Cross-lingual Performance o

4. Conclusion

Layers 6-12

100K files per language adapted from The Stack [2]:
permissively licensed GitHub repositories

Figure 1: Toy example of intermediate token predictions (lens output) for Java (left) and Kotlin (right)

Figure 2: Visualization of null attention using Bertviz [3]

~ - ~
Highest confidence corresponds to prediction depth 1. / \\\
g Layer 9, Head 7
Output | Types _is _larger | _than " _+ Output fun _ _capture (able | (.request
11 | Types _is _larger | _than " _+ 1 _ _function|_capture| _Object | able (request-—-""'f-- request
10 | Types _is _larger | _than " _+ 10 |function|_function|_capture| _Object | able | () 0 0
9 | Types _is _larger | _than " _+ 9 |function|_function| _add _Object | able | () ? ?
8 | Type |_should| _not _than " _+ 8 |function|_function| _add _Object | able (
7 | Type |_should| _not _than " _+ 7 public |_function| _set _Object | able | ;
Layer 6 s _is _not _on " _+ Layer 6 _function| _test _Object | able | ;
depth 5 s " _not _on the | _+ depth 5 _ _Object | able | () 1 X
a s } “not “on the | - 4) _ “object | able | (Null Attention Ratio = N Z ajo(xz) 209 /
3 s . _not / 0 | _+ 3 _ _ _Array | able \\\ =0 //
2 s 5 _not 5 _0 _+ 2 _ _ _File able S~ -
1 s . _not . 0 | _+ 1 _ _ _String | able | _
Input | column | Types _is _greater|_than| _" | _+ Input \n internal _fun _new Throw [able| (CodeGPT:
o 12 layers
Token Token

e 12 attention heads per layer

Highest confidence and

aCCUraCy N

Does not recognize language-

Familiar languages

Unfamiliar languages

</ specific code syntax

Best

Common code structures
Language-specific elements

User-defined elements

Worst

Structures for which unidirectional
architecture is insufficient

Common code structures

* Positive correlation between model accuracy and magnitude of null attention
¢ Positive correlation between model confidence and variance of null attention across layers

Future research

Language-specific elements

¢ Null attention is not sufficient to explain cross-lingual differences between best and worst tokens nor token categories

¢ Investigate differences in attention patterns (beyond null attention) across high- and low-resource languages

o |dea: clustering of attention heads to group common patterns or detect unique patterns

[1] Radford, A. et al. Language models are unsupervised multitask learners. OpenAl blog, 9 (2019).

[2] Kocetkov, D. et al. (2022, November 20). The Stack: 3 TB of permissively licensed source code.

(3] vig, J

. (2019, July). A Multiscale Visualization of Attention in the Transformer Model.

2
TU Delft

