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1. Introduction

» Code intelligence tools such as GitHub Copilot have significantly enabled developers to enhance productivity and efficiency [1].
o These tools are based on Large Language Models (LLMs) that have been trained on source code in order to perform programming-related

tasks including code completion.

» However most of these models are trained on merely widely-used programming languages, which may limit the performance on low-resource

languages.

e This also means there is limited research on performance of code models on low-resource languages, inspiring us to....

investigate how the GPT-2-based Transformer CodeGPT performs on the token-level code
completion task across high- and low-resource languages.
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Note that our multilingual CodeGPT model was fine-tuned on: Java, JS, Python, PHP, Go and Ruby. These will be indicated by *.

N—————

3. Results

Best and Worst Predictions

Figure 3: Confidence of False Predictions

Best

e Kotlin, Go: mostly user-defined elements
o Reliance on inherited natural language understanding through GPT-2
o Endings of conjunctions are trivial due to uni-directional architecture

e Java, Python, C++ and Go: also contain common code structures and language-specific elements

2. Research Questions & Methodology

RQ1: When does CodeGPT generate
incorrect tokens with high confidence
("worst" predictions)?

RQ2: Cross-lingual patterns in
CodeGPT's attention
mechanism?
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4. Conclusion

Layers 6-12

100K files per language adapted from The Stack [2]:
permissively licensed GitHub repositories

Figure 1: Toy example of intermediate token predictions (lens output) for Java (left) and Kotlin (right)

Figure 2: Visualization of null attention using Bertviz [3]
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* Positive correlation between model accuracy and magnitude of null attention
¢ Positive correlation between model confidence and variance of null attention across layers

Future research

Language-specific elements

¢ Null attention is not sufficient to explain cross-lingual differences between best and worst tokens nor token categories

¢ Investigate differences in attention patterns (beyond null attention) across high- and low-resource languages

o |dea: clustering of attention heads to group common patterns or detect unique patterns
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