CROSS-LINGUAL PERFORMANCE OF **CODEGPT** ON THE **CODE COMPLETION** TASK

Nadine Kuo h.n.kuo@student.tudelft.nl Supervisors: Maliheh Izadi, Jonathan Katzy Professor: Arie van Deursen

1. Introduction

- Code intelligence tools such as GitHub Copilot have significantly enabled developers to enhance productivity and efficiency [1].
- These tools are based on Large Language Models (LLMs) that have been trained on source code in order to perform programming-related tasks including code completion.
- However most of these models are **trained** on merely widely-used programming languages, which may limit the performance on **low-resource languages**.

iulia

• This also means there is limited research on performance of code models on low-resource languages, inspiring us to....

investigate how the GPT-2-based Transformer CodeGPT performs on the token-level code completion task across high- and low-resource languages.

Note that our multilingual CodeGPT model was fine-tuned on: Java, JS, Python, PHP, Go and Ruby. These will be indicated by * .

2. Research Questions & Methodology

60 ·

3. Results

— Best and Worst Predictions ——

Figure 3: Confidence of False Predictions

Figure 4: Confidence of Correct Predictions

	EM (%)	MRR (%)			
*Java	69.2	16.9			
*Python	68.2	14.7			
C++	64.5	11.6			
*Go	67.9	12.4			
Kotlin	58.3	11.8			
Julia	65.0	11.2			

 Table 2: Cross-lingual Performance

<u>Best</u>

- Kotlin, Go: mostly user-defined elements
- Reliance on inherited natural language understanding through GPT-2
 Endings of conjunctions are trivial due to uni-directional architecture
- Java, Python, C++ and Go: also contain common code structures and language-specific elements

<u>Worst</u>

- Kotlin, Go: beyond punctuation, also common code structures and language-specific elements
- Java, Python, C++ and Go: structures for which left-context is not sufficient, including punctuation

*Java		*Python		C++		*Go		Kotlin		Julia	
Best	Worst	Best	Worst	Best	Worst	Best	Worst	Best	Worst	Best	Worst
get	}	self	def	;	}	х	}	get	}	1	end
;	public	S	1	х	if	:	or	S	return	0	1
<	return	get	class	get	{	n	?	qual	if	2	2
als	if	0	:	n	->	for	1.000	S	get	t	Q.
//	@	1	=	0	return	n	<	ator		[[
Exception	VK	if	if	1	#	11	case	n	get	ices	:
String	private	n	@	s	::	son	<	els		[[
or	assert	,	[int	case	S	is	point	get	n	{
of	this	format	2	or	void	n	java	1	function]	else
adata	{	args	0	r	log	ert	to	els	var	estamp]

Table 1: Top-10 tokens predicted tokens with highest confidence

Null Attention Patterns

- Distributions of confidence of correct predictions (Figure 4) and magnitude of null attention (Figure 5) align with each other.
- Performance (Table 2) correlates positively with magnitude of null attention ratios (Table 3).
- Model confidence correlates positively with variance of null attention across model layers (Table 3).
- Magnitude and variance of null attention are **similar** between:
- Best and worst predictions
- Token categories

	Mean ± SD	Mean ± SD in confident setting		
*Java	9.3 ± 3.8	10.3 ± 8.7		
*Python	8.9 ± 3.4	8.2 ± 7.9		
C++	9.2 ± 3.5	9.3 ± 9.3		
*Go	9.1 ± 3.1	8.6 ± 8.1		
Kotlin	8.2 ± 2.7	7.8 ± 7.6		
Julia	7.7 ± 2.7	8.6 ± 9.7		

Table 3: Null Attention Ratio Statistics over

 Layers 6-12

	0.1	0.1	0.1	0.1	0.1	0.1	
2	0.2	0.2	0.2	0.2	0.2	0.2	- 14
e	1.0	1.6	0.8	0.3	1.2	1.5	- 12
4	2.5	1.4	2.1	2.0	1.6	2.8	(%
5	1.1	1.4	1.8	1.7	1.8	1.5	- 10) ti
ers 6		11.8	9.1	9.4	12.6	5.2	- 8 -
Lay 7	3.7	1.8	2.5	4.4	3.2	2.5	entic
œ	15.2	8.6	13.3	13.0	10.2	10.2	-6 fi
6	8.3	9.3	8.7	6.7	12.4	11.1	Z
10	11.5	9.2	13.4	10.2	6.4	7.9	7
Ŧ	12.9	13.3	7.2	5.7	8.8	8.4	- 2
12	5.8	8.6	10.6	7.7	10.3	8.1	
4	18 ⁴⁸ * 9	Athon	C _x ×	* 60	40 ^{tim}	Julia	

Ire 5. Overall Null Attention Patios by Lay

4. Conclusion

• Positive correlation between model accuracy and magnitude of null attention

• Positive correlation between model confidence and variance of null attention across layers

Future research

- Null attention is not sufficient to explain cross-lingual differences between best and worst tokens nor token categories
- Investigate differences in **attention patterns** (beyond null attention) across high- and low-resource languages
- Idea: clustering of attention heads to group common patterns or detect unique patterns

Radford, A. et al. Language models are unsupervised multitask learners. OpenAI blog, 9 (2019).
 Kocetkov, D. et al. (2022, November 20). The Stack: 3 TB of permissively licensed source code.
 Vig, J. (2019, July). A Multiscale Visualization of Attention in the Transformer Model.

