
Superoptimization

• The optimizations in the
“middle-end” of the compiler
are numerous, time-consuming

to develop, hard to get right.

• Instead of proving upper or
lower bounds for abstract al-
gorithms, a superoptimizer

finds the shortest program in
the program space defined by a

instruction set.

Souper

 • A synthesizing superopti-
mizer that automatically de-
rives novel middle-end optimi-

zations.

• With an intermediate repre-
sentation (IR) that resembles
a purely functional, control-
flow-free subset of LLVM IR

Are the original results
reproducible?

What program classes does
Souper work best in?

1. Output Souper IR

2. Binary Size

3. Compilation Speed

1-) LLVM-IR is generated via a front-end

2-) For each integer-type returning LLVM
module Souper extracts a root for a LHS

3-) Souper recursively follows dataflow
edges adding path conditions and blockpcs
as necessary

4-) RHS are enumerated using CEGIS

5-) The equivalence of the RHS & LHS are checked
using an SMT solver

6-) If this query is satisfiable and the RHS is
smaller than the LHS an optimization is found.

> Evaluating Souper: A Synthesizing Superoptimizer e.b.demir
@student.tudelft.nl

d.g.sprokholt,
s.s.chakraborty

@tudelft.nl

> Program Classes

> High cyclomatic complexity

 - Exploiting correlated Φ nodes

> Programs Souper cannot fully extract from

 - Memory manipulation

 - I/O intensive

 - Floating point operations

> Programs with UB

 - LLVM vs. Souper’s UB representation

 - How well can Souper support UB?

> Original Results

Compiling clang

 Compile time(minutes) | Binary size (MiB):

 Souper-optimized: 88 / 14 | 64.3

 Regular build: 13 | 67.2

2

1

8

7

4

3

> CEGIS

1-) Program space is searched for a candidate P
that satisfy

2-) Query the verification oracle with P

3-) If it works for all inputs return P else add

> Pruning the search space

 > w/o Dataflow Analysis

 > An outer CEGIS loop

 > Not synthesizing constants directly

 > Cost model

 > Ad hoc pruning Strategies

 > w/ Dataflow Analysis

 Souper tries to find conflicting dataflow
 facts between a specification and a poten-
 tially symbolic candidate to prune branch-
 es of the search tree

 Consider the specification:

 f(x) = (x * x * x) | 1

 And the optimization candidate:

 g(x) = H(x) << C

 Based on the specification, last bit is
 always set.

 Whereas the candidate has the last bit al
 ways cleared.

 -> Conflict, this subtree of candidates
 can be pruned.

> Attempts at reproducing results

- Using the drop-in compiler to compile the
latest version of clang + LLVM w/ & w/o an
external cache

- Using the drop-in compile to compile clang
3.9.0 w/ & w/o an external cache

- linking Souper against LLVM 3.9.0

- Using flags from slumps.

- Extracting left-hand sides without infer-
ring optimizations and using the inferring
from the cache separately.

- Even though CEGIS does not attempt to naively
enumerate the entire program space and performs
well in most cases, Souper makes use of various
strategies to shrink the search space.

5

6

