
A different representation of space is used in a Virtual
Reality(VR) game instead of the normal Euclidean space we

are used to.

This opens up the possibility of traversing infinitely far in the
Virtual space while being confined to a relatively limited

space in the real world.

People will need the ability to traverse this new space in an
intuitive or at least competent way.

One way to help people with navigation in such a space would
be to show the person what the fastest way would be to go

from point A to point B.

1: Background/motivation:
Breadth first: The shortest path can be found by traversing the graph in a breath-first manner. This is
used as a baseline
A* with scalar: Dijkstra but it is guided by a heuristic, which in this case is the fastest possible path in
the virtual world without taking into account the physical world. How important the heuristic is can
be adjusted with a scalar
Anytime A*: Same algorithm as above but it can be stopped at any time and it will return an estimate
of how the shortest path would start.
 Nodes abstraction: This method precomputes the shortest paths in an area around a point and then
models a graph from nodes which each represent an entire area of the graph instead of a single point
(See figure 4)

Domain-specific rules: This method uses assumptions that can be made about the problem to
compute a path without actually traversing a graph. It currently has the limitation that it can only
handle cases when the path starts in the centre tile.

Since it is possible for the problem to be modelled as a graph, graph traversal algorithms can be a
solution. The ones that were used are:

3: Proposed Solutions:

4: Experiment Results:

Figure 5: A graph that models the runtime
for each algorithm

Figure 6: A graph that models the
correctness of the returned answers

Figure 7: It shows the length of the predicted
path the anytime algorithm returns based on

the time-limit and scalar
All the predicted paths were optimal

Figure 4: A possible path using pre-computed
nodes.

The green dot in this figure is the starting point,

the blue dot represents the goal, the dotted
circles represent the precomputed area around
each node and the redline/nodes represent the

walked path.

The environment in which the shortest path needs to be
computed is a combination of a 3x3 grid, which represents

the play area, and a plane with the Order-5 square tiling. See
Figure 1 for an example.

Getting the shortest path in either the plane or the grid
would not be that hard to compute. It is the combination of
the two that currently does not have an efficient method.

The goal is to create an algorithm that can find the shortest
path from point A to point B in the virtual world under these

conditions as fast as possible.

2: Problem Description:

5: Conclusion:
If the results need to guarantee the shortest path, A* with scalar 1 should be
used, but it is quite slow and thus not viable on goals that are further away
A* with a scaler larger than 1 will sacrifice some accuracy for a big speedup of
the answer
If the goal is truly far away the domain-specific rules or anytime algorithm
should be used. The anytime algorithm does not return a full path (but this isn't
needed in all use cases) and the prediction using Domain-specific rules is
currently the least accurate but fastest algorithm.

Figure 1: figure shows relation of the real world tiles
and the virtual tiles

A Virtual Reality Game to Explore Hyperbolic Geometry

Ravi Snellenberg - rsnellenberg@tudelft.nl Responsible Professor: Martin Skrodzki Supervisor: Rafael Bidarra

6: Future work:
The constraint the domain-specific algorithm currently
has can still be removed, it might also be possible to
have it always return accurate results
The abstraction nodes method currently just slows
things down and makes the answer worse. Both of
which could be fixed
Find the best way to integrate this shortest path into
the VR game, to help the player navigate

