Enhancing DAG-Based Consensus Protocols with Weighted Voting: A Performance

1. Background

Analysis of N arwhal and Tusk

Supervised by Dr.

Consensusalgorithms typically have n nodes and can tolerate up to f faulty nodes.

WHEAT [4]

- Introduces a weight assignment scheme, designed to rely on the fastest replicas in the

system
- proposes the addition of A additional nodes

- allocates 1 +]% weight to the 2f fastest nodes in the system and weight 1 to the rest.

- changesthe threshold for guorum formationfrom 2« f+1to2*«(f+A)+ 1

AWARE [3]
- self-optimization framework for BFT protocols

- provides a method to predict the latency of PBFT given a set of network

latencies

- detects changes in the network and redistributes the weights to achieve

optimal consensus latency

Round r-1

Narwhal and Tusk [1]

- DAG-based consensus algorithm

- Narwhal is responsible for the
dissemination of the blocks in the
network and building a DAG
representing the causal history

- validators propose blocks after
receiving 2 * f + 1 certificates

- validators create certificates
when 2 x f + 1 validators have signead
the proposed block.

- Tusk operates on the resulting

DAG and makes sure that nodes totally
order the DACG.

Certificates

¥
i

Blocks

Round r

Certificates

Figure 1: Three rounds of Narwhal.

]
TUDelft

Vian Robotin (V.Robotin@student.tudelft.nl)
Jérémie Decouchant and Rowdy Chotkan
2. Research Question 4. Results | f SO
How can weighted voting improve the - Figure 2: Narwhal performance metrics (n =11, f = 3).
performance of Narwhal and Tusk? SRR
3 M h d 1 1500 | 1211.6 1211.6 1175 8 12355
: cthodology
Gathered real-world latency measurements {000 070 3 6070 3
from CloudPing.
g 800 -
We|g hted Narwhal: E B Latency Decrease (%)
: . . Optimal Weights Latency (ms)
. jc'lmptlemehtcfd Iaterrcg{ pretd|Ct|Og moddel % 6001 mmmm Optimal Weights with Faulty Replica Latency (ms)
O estimate round completion times base =
on weighted votes. 200,
- Introduced A additional validators ana
assigned weights. 200
- defined four objective functions (Mean,
Max, Stddev, Mean+Stddev) to optimize ol = :
COHSGHS.LJ.S Iatency. . Mean Max Stddev Mean+Stddev
- Utilized Exhaustive Search and Objective Function
Simulated An nea“ng for thima| \/\/e]g Nt Table 1: Narwhal and Tusk evaluation metrics with different weight assignments.
Roundr+! assignment.
- Unweighted Mean Max Stddev
Blocks
Weighted Narwhal and Tusk: Consensus TPS 36,296 tx/s 27,330 tx/s 29,394 tx/s 21,572 tx/s
'. _ modified original Narwhal and Tusk Consensus BPS 18,583,673 B/s 13,993,181 B/s 15,049,521 B/s 11,044,740 B/s
\ . J J ficial . Consensus latency 2,607 ms 1,673 ms 2.008 ms 2.245 ms
\ - - Introduced artificial latencies to End-to-end TPS 35,977 tx/s 27,086 tx/s 29,151 tx/s 20,675 tx/s
simulate CloudPing data. End-to-end BPS 18,420,032 B/s 13,868,152 B/s 14,925,111 B/s 10,585,449 B/s
' - adjugted quorum formation thresholds End-to-end latency 2,982 ms 1,961 ms 2,643 ms 2.788 ms

<L >

S
4

- assigned weights based on the model.

5. Conclusion

- Weighted voting can significantly reduce
consensus latency in both Narwhal and Tusk.
- The Mean objective function achieved

- Limitation: the search algorithms are
computationally expensive

the lowest consensus and end-to-end latency.

Reterences

[1] George Danezis, Eleftherios Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal and tusk: a
dag-based mempool and efficient bft consensus. Proceedings of the Seventeenth European Conference on Computer
Systems, 2021.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd Symposium on Operating Systems
Design and Implementation (OSDI 99), New Orleans, LA, February 1999. USENIX Association.

[3] Christian Berger, Hans P Reiser, Joao Sousa, and Alysson Bessani. Aware: Adaptive wide-area replication for fast
and resilient byzantine consensus. IEEE Transactions on Dependable and Secure Computing, 19(3):1605-1620,
2020.

[4] Joao Sousa and Alysson Bessani. Separating the wheat from the chaff: An empirical design for geo-replicated
state machines. In 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pages 146-155, 2015.

	Slide 1

