
• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 
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Personal values are the abstract motivations that drive our opinions and actions. 
Using state-of-the-art NLP methods, we design a classifier to study their expression in 
text.

1) Does our fine-tuning method increase the moral classifier’s performance. 

2) Do fine-tuned embeddings generalise across domains of discourse. 

3) Are fine-tuned embeddings transferable. ALM
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1) Does fine-tuning Sentence-BERT embeddings with triplet loss 
increase the moral classifier’s performance.


Results

For the moral classification task, we proposed a method to fine-tune 
state-of-the-art embeddings. The resulting classifier achieves 72% 
Micro F1-score on the MFTC dataset.


For a complete understanding of moral embedding’s transferability, MFTC 
should be extended.  As MFT annotating is labour intensive, we recommend 
experimenting with semi-supervised annotating methods5.

The chart on the left shows how fine-tuning SBERT improves the 
Macro F1-Scores for the moral classifiers. On the right, we illustrate 
how embeddings trained on the entire MFTC recognise each moral 
value.
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Moral Foundations Theory 1 (MFT) proposes five  “irreducible basic elements” of 
morality, that we can frame our study in: care/harm, authority/subversion, fairness/cheating, 
loyalty/betrayal, purity/degradation.

Embeddings convert word and sentences to meaningful vectors and they are an 
important step in a text classifier’s pipeline. They can be domain-adapted to improve the 
model’s performance.

Baseline models and fine-tuned SBERT on 
the entire dataset (MFTC)
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1. Moral Foundations Twitter Corpus

7 datasets

35 000 annotated tweets
3-8 annotators, moral values or non-moral
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3. Classifiers

2.Sentence-BERT

To better explain our method’s success, it should be investigated if 
semantically similar text expresses similar moral values.
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2) Do fine-tuned embeddings generalise 
across domains of discourse.

3) Are fine-tuned embeddings transferable.

Transferability

We define our problem as a multi-
label classification problem. Sentence embedding 
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Two baseline models: LSTM3 and 
BiLSTM with GloVe4 word embeddings.

Third model: Sentence-BERT 
embeddings (pre-trained/fine-tuned) 
with a simple Neural Network on top.

Motivation: no prior moral classifiers focus on fine-tuning state-of-the-art 
embeddings (Sentence-BERT2) to improve the model’s performance.  Moreover, after 
training, embeddings’ utility is not limited to the classification task: Semantic Textual 
Similarity, clustering. 

Research Goal: Train embeddings to learn moral foundations and assess our method 
by answering three research questions:

Future work
Sentence embeddings with state-of-the-art 
results on Semantic Textual Similarity.

Triplet loss is used to fine-tune pre-trained 
SBERT embeddings
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