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INntroduction

Personal values are the abstract motivations that drive our opinions and actions.
Using state-of-the-art NLP methods, we design a classifier to study their expression in
text.

Moral Foundations Theory ' (MFT) proposes five “irreducible basic elements” of
morality, that we can frame our study In: care/harm, authority/subversion, fairness/cheating,
loyalty/betrayal, purity/degradation.

Embeddings convert word and sentences to meaningful vectors and they are an
important step in a text classifier's pipeline. They can be domain-adapted to improve the
model’s performance.

Train embeddings to learn moral foundations and assess our method
by answering three research questions:

no prior moral classifiers focus on fine-tuning state-of-the-art
embeddings (Sentence-BERT2) to improve the model's performance. Moreover, after
training, embeddings’ utility 1s not limited to the classification task: Semantic Textual
Similartty, clustering.
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Triplet loss is used to fine-tune pre-trained
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Two baseline models: LSTM3 and

BILSTM with GloVe* word embeddings. Neural Network (NN) LSTM/Bi-LSTM

Third model: Sentence-BERT
embeddings (pre-trained/fine-tuned)
with a simple Neural Network on top.
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The chart on the left shows how fine-tuning SBERT improves the
Macro Fl-5cores for the moral classifiers. On the right, we illustrate
now embeddings trained on the entire MFTC recognise each moral
value.

Transferability

;r?]"(‘j | Test Fine-tune Train | Test
Fine-tuned th dataset 7 datasets Fine-tuned 7th dataset
Embeddings — Embeddings

80%  20% 100% 80% 80%  20%

Results

Baseline models and fine-tuned SBERT on
the entire dataset (MFTC)

SBERT embeddings, different training
methodologies
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Future work

For a complete understanding of moral embedding’s transferability, MFTC
should be extended. As MFT annotating Is labour intensive, we recommend
experimenting with semi-supervised annotating methods>.

To better explain our method’s success, It should be investigated It
semantically similar text expresses similar moral values.
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