Interaction with Artificial Social Agents a thematic analysis of people's experiences

Research Questions

[RQ1] - How do people experience their interaction with Artificial Social Agents?

[SQ1] - Can a (locally hosted) Large Language Model (LLM) identify these experiences?

[SQ2] - How do manual and LLM-based thematic analysis compare with each other?

Research

The use of Artificial Social Agents is rapidly expanding across society. As these agents grated into our interactions, understanding the user perception and them becomes increasingly necessary to ensure their design aligns with user needs, promotes trust, and supports meaningful engagement.

The aim of this study is to investigate how users experience interactions with Artificial Social Agents (ASAs), focusing on using **thematic analysis** to identify recurring themes in user-reported experiences with ASAs.

There is an ongoing debate in thematic analysis which centers on whether it should Zadopt a more structured, descriptive approach or embrace a more interpretive reflexive methodology

- > We used a **middle of the road** approach (Figure 1)
- > While the generated codes were based on the keywords, a continuous reiteration of the responses was conducted, allowing for the emergence of new insights through a more intuitive analysis.
- Passes throughout the dataset were not linear, but reiterative.

<u>^</u>				
	Analyze - Identify - Return			
	Familiarization			
1	Coding			
	Grouping into Themes		Generate	
			themes	
*	Match with manual themes	*		
	Themes			
2			ldentify Themes	
←	Inter-Coder Agreement			

Figure 2: Large Language Model Approaches: 1) Theme Generation Approach. (2) Theme Application Approach mes fed into LLMs (Qwen | DeepSeek | Phi | NeMo | Gemma | Llama)

nguage Model can do our task of thematic analysis, we have tried out two approaches (Figure 2)

Unguided Prompt: LLM generates themes independently from the dataset Guided Prompt: LLM tags responses using predefined themes

Prompts were given following an Analyze - Identify - Return structure. Familiarize with the responses (**Analyze**), give a coding scheme (**Identify**) and proup the codes together (**Return**).

Celal Karakoç

Inter-Coder Agreements

The dataset consisted of 666 open-ended responses and questionnaire scores (90 items, Likert Scale) from the ASAQ (Artificial Social Agent Questionnaire), a standardized tool for measuring user experiences with Artificial Social Agents.

To **minimize bias** we did 2 Inter-Coder Agreements for each research question.

- > The first Inter-Code resulted in high agr themes.
- To ensure and unbi deliberately chose peer's approach to allowing them full a
- method without im framework or biase
- In cases where agree coders was lower, _coder identified th
- Looder did not.

For the second Inter-Coder Agreement a mapping of the themes with the 90 items of the ASAQ was conducted by both coders. Both mappings had an overlap of 80.19%, suggesting the mapping was reliable with minimal bias.

The same process in Table 1 was conducted, but with the LLM as Coder 2. the results indicate that the LLM performs poorly when applying the coding scheme through a guided prompt.

 $\Box \Box$

As shown in Table 2 and Figure 4, the average κ over all themes is very low.

The ability of Large Language Models to reliably apply predefined themes to a set of responses remains consistently low across models.

This pattern also holds true when looking at each theme individually, rather than comparing across models.

Model	Avg. κ	Interpretation
Llama	0.0042	Slight agreement
Qwen	0.1409	Slight agreement
DeepSeek	0.2728	Fair agreement
Phi	0.1446	Slight agreement
Gemma	0.2104	Fair agreement
NeMo	0.0897	Slight agreement

Table 2: Average kappa across LLMs

> A Thematic Analysis was performed to gather themes and a **mind map** containing the themes and codes was made in between passes and updated accordingly (Figure 3).

Figure 3: Mind map with regards to the *codes* (in light blue) and the resulting *themes* (in dark blue).

a z mer eeder Agreemente for eder for gaestion.					
er Agreement (Table 1) eements across	Theme (Coder 1)	Theme (Coder 2)	κ	Interpretation κ	
	Agent's Coherence	Accuracy	0.83	Almost perfect agreement	
	Agent's Creativeness	Creativity	0.92	Almost perfect agreement	
	Agent's Efficiency	Efficiency	0.93	Almost perfect agreement	
ased comparison, we	Agent's Enjoyability	Enjoyability	0.71	Substantial agreement	
not to interfere with the	Agent's Helpfulness	Helpfulness	0.79	Substantial agreement	
	Agent's Interestingness	Interestingness	0.28	Fair agreement	
thematic analysis,	Agent's Usability	Usability, Accessibility, Convenience	0.8	Almost perfect agreement	
utonomy in⁄théir	Attitude	Entertainment	0.2	Fair agreement	
oosing our own	Emotional Experience	Emotional Connection	0.33	Fair agreement	
SAAAAA	Human-like Behaviour	Human-like Behavior	0.5	Moderate agreement	
	Potential	Potential	0.65	Substantial agreement	
ement between	Productivity	Productivity	0.74	Substantial agreement	
was because the first	User's Engagement	Engagement	0.63	Substantial agreement	
mes that the second	User's Trust	Trust	0.71	Substantial agreement	
$\overline{\Lambda}$ $\overline{\Lambda}$					

Table 1: Comparison of themes with those derived by a peer (Coder 2), based on a sample of n=100 responses.

Figure 4: Kappa distributions across LLMs

The themes throughout were quite evenly divided from their descriptors. ere was an under representation of older age-groups here was an under representation of people with no formal education

ional Experience (with its subsets User's Emotional Presence and Agent's Emotional Presence) was the most occuring theme. The themes that mattered the most towards the experience of people were the Agent's Helpfulness, Attitude and Human-like Behaviour. The prominence of these themes suggests participants prioritize emotional connection and practical utility in interactions with ASAs. Agent's Cognition and Agent's Coherence received moderate counts and have a mixed polarity, suggesting participants noticed both strengths and weaknesses in the agent's intelligence and logical consistency.

The agents were overwhelmingly evaluated positively, with Eliza, an early rule-based chatbot simulating a psychotherapist, standing out as an exception (Figure 6).

n regards to the theme **Human-Like Behaviour**: The participants seem to think of the social agents more as tools to be used rather than companions or friends that can be talked to. This didn't really change how the participants felt about their usability, helpfulness, coherence or other such factors.

eme	ρ	p-value	CI (95%)	Correlation	Significance
ent's Cognition	0.56	< 0.001	[0.36, 0.72]	Moderate positive correlation	Very strong statistical significance
ent's Coherence	0.41	0.003	[0.15, 0.61]	Moderate positive correlation	Strong statistical significance
ent's Emotional Presence	0.23	0.148	[-0.08, 0.5]	Weak positive correlation	No statistical significance
ent's Enjoyability	0.59	< 0.001	[0.43, 0.72]	Moderate positive correlation	Very strong statistical significance
ent's Helpfulness	0.12	0.123	[-0.03, 0.26]	Weak positive correlation	No statistical significance
ent's Intentionality	0.5	0.096	[-0.1, 0.84]	Moderate positive correlation	No statistical significance
ent's Interestingness	0.32	0.011	[0.08, 0.53]	Moderate positive correlation	Statistically significant
ent's Intuitiveness	0.59	0.013	[0.15, 0.83]	Moderate positive correlation	Statistically significant
ent's Personality	0.3	0.053	[0, 0.55]	Moderate positive correlation	No statistical significance
ent's Quickness	0.11	0.485	[-0.19, 0.39]	Weak positive correlation	No statistical significance
ent's Reliability	0.53	< 0.001	[0.32, 0.68]	Moderate positive correlation	Very strong statistical significance
ent's Sociability	0.63	< 0.001	[0.41, 0.78]	Strong positive correlation	Very strong statistical significance
ent's Usability	0.25	0.008	[0.07, 0.42]	Weak positive correlation	Strong statistical significance
titude	0.25	0.002	[0.1, 0.39]	Weak positive correlation	Strong statistical significance
notional Experience	0.32	< 0.001	[0.21, 0.43]	Moderate positive correlation	Very strong statistical significance
man-like Behaviour	0.37	< 0.001	[0.23, 0.5]	Moderate positive correlation	Very strong statistical significance
rformance	0.33	0.055	[-0.01, 0.6]	Moderate positive correlation	No statistical significance
er Acceptance	0.3	0.115	[-0.08, 0.61]	Moderate positive correlation	No statistical significance
er's Emotional Presence	0.45	< 0.001	[0.25, 0.61]	Moderate positive correlation	Very strong statistical significance
er's Engagement	-0.05	0.594	[-0.25, 0.14]	Weak negative correlation	No statistical significance
er's Trust	0.47	0.018	[0.09, 0.73]	Moderate positive correlation	Statistically significant
er-Agent Alliance	0.26	0.009	[0.07, 0.43]	Weak positive correlation	Strong statistical significance
er-Agent Interplay	0.53	< 0.001	[0.26, 0.72]	Moderate positive correlation	Very strong statistical significance

Table 3: Correlations with the ASAQ

correlation.

Our findings demonstrate that the ASAQ is a reliable and valid instrument for assessing user experience with Artificial Social Agents (ASAs). A substantial 74% (23 out of 31) of themes from our qualitative analysis could be directly mapped to ASAQ constructs, and 15 of these showed statistically significant, mostly positive correlations.

Correlation analysis with the ASAQ (Table 3) showed that all statistically significant themes had positive correlations with their ASAQ counterparts, which suggests that higher user ratings on aspects like enjoyability, intelligence, and reliability align with higher overall ASAQ scores. > Themes such as Agent's Cognition, Enjoyability, Reliability, and Sociability had especially strong

Two unexpected results are noticeable: Agent's Quickness, which might lack a clear ASAQ counterpart and may not align with any ASAQ construct, and **User's Engagement**, which showed a weak negative correlation. Any conclusions based on the **User's Engagement** theme should be interpreted with caution.

Results

ioure 6: Average polarity (direction) of participan es with 1 being positive and –1 being negative

TUDelft

Conclusions

This study explored user experiences with Artificial Social Agents (ASAs) through manual thematic analysis. 31 distinct themes were identified. We demonstrated that

- > Key themes including **Agent's Helpfulness**, **Attitude**, and **Human-like Behaviour**, highlight users' desire for both practical support and emotional resonance.
- > The *Human-like Behaviour* theme revealed a tension: while some users appreciated anthropomorphic traits and found them comforting or engaging, others were put off by them.
- > Agent's Cognition, Coherence, and Intentionality show that users assess intelligence of the agent with a mixed sentiment
- people praised insightful responses but quickly noticed incoherence, contradictions or awkward behaviour.
- > Themes that focused on how the agent influenced the user's daily routine, mood, and willingness to reuse it, (e.g. *Ease of Life*, *Productivity*, *Autonomy*, *User Acceptance*) had positive experiences which often correlated with a desire to continue using the agent.
- > **Tone mattered**: cold or mechanical interactions led to negative sentiment, while warm or natural responses improved user perception

In addition to the manual analysis, we evaluated the capabilities of various locally hosted Large Language Models (LLMs) in conducting thematic analysis. We demonstrated that

- > LLMs were capable of capturing general thematic structures through **unguided** prompts (achieving a 74% overlap with manually identified themes)
- The high overlap suggests that LLMs can serve as valuable auxiliary tools in qualitative research, particularly in the early stages of theme discovery or as a secondary check for human-led analysis.
- > LLMs performed poorly in the *guided*, response-level thematic annotation task. i.e. LLMs lack the consistency and nuance required for fine-grained qualitative analysis, particularly when applying predefined coding frameworks.

References

[1] - <u>github.com/ckarakoc/bep-asa</u> (DATA & CO [2] - <u>ii.tudelft.nl/evalquest/web</u> (ASAQ)