Effect of Demonstrations with Temporal Biases on Learning Rewards using Inverse Reinforcement Learning

Introduction

- Inverse Reinforcement Learning to learn from expert demonstrations in order to obtain the maximized reward function in Markov Decision Process (MDP)
- Cognitive biases present a form of deviation from rationality that affects human decision-making
- Temporal biases: time consistent (present) and time inconsistent (temptation, pre-commitment)

Methodology

Environment:	
6 x6 Grid-World MDP inspired by [1]	V_s
Agents with biases:	1a) Valu
 Time consistent: trained with adapted value iteration (1a) to involve bias with exponential 	V_s
 discounting (1b) Time inconsistent (Naive and 	2a) Value
Sophisticated): trained with value iteration (2a) adapted to [2], to	
discounting (2b)	5 -
Experiment [.]	4 -
 Train agents to have biases and 	3 ·
generate trajectories using policy	2 ·
 Learn (recover) rewards from 	1 -
generated trajectories and original reward using MEIRL	0
 Evaluate performance of learning rewards 	Figure
 Compare performance to that of unbiased(optimal) agent 	

Objective

"To what extent can IRL learn rewards from demonstrations that contain some form of temporal cognitive bias?"

• We perform this using Maximum Entropy IRL (MEIRL) algorithm [1]

$$V_s = \max_a \left\{ R(s) + \gamma * p(s, s', a) V_{s'}
ight\}$$

ue of reward at state **s** for time consistent agent

$$= \max_{a,d} \left\{ \frac{1}{1+kd} R(s,a) + p(s,s',a) V_{s'} \right\}$$

e of reward at state **s** for time inconsistent agents

D =

1b) Exponential discounting of reward

$$D = \frac{1}{1 + kd}$$

2b) Hyperbolic discounting of reward

e 1a: Optimal policy of unbiased agent

Figure 1: Example of optimal policy of agent and recovered reward using MEIRL

[1] B. D. Ziebart, A. I. R. Maas, J. A. Bagnell, and A. K. Dey, Maximum entropy inverse reinforcement learning. 2008, pp. 1433–1438. [Online]. Available: http://ai.stanford.edu/~amaas/papers/amaas_aaai.pdf

Author Professor Supervisor Mateja Zatezalo (M.Zatezalo@student.tudelft.nl) Luciano Cavalcante Siebert Angelo Caregnato Neto

$$= \gamma^t$$

Figure 1b: Recovered reward using MEIRL

Limitations

- Creating synthesized data for demonstrations(agents) instead of real-life human data
- Implementation of Naive and Sophisticated agent may not replicate the supposed behavior to perfection due to adaptation in implementation
- Environment limited to 6x6 Grid-World MDP, can be expanded and enriched with features (e.g. walls)

TUDelft

Figure 4: Euclidean similarity of trajectories of recovered reward

Figure 5: Euclidean similarity of trajectories of biased agents and unbiased agent with recovered reward

