
AUTHOR

Kwangjin Lee
k.lee-5@student.tudelft.nl

SUPERVISORS

 Sebastian Proksch, Shujun Huang

References
[1] JetBrains. 2025. Measure CI/CD Performance With DevOps Metrics. In TeamCity CI/CD Guide. Retrieved May 8, 2025, from https://www.jetbrains.com/teamcity/ci-cd-guide/devops-ci-cd-metrics/.
[2] GitHub. 2024. The State of the Octoverse 2024. In GitHub News & Insights. Retrieved May 22, 2025, from https://github.blog/news-insights/octoverse/octoverse-2024/
[3] Software.com. 2024. Build Success Rate. In Engineering Metrics Library. Retrieved May 22, 2025, from https://www.software.com/engineering-metrics/build-success-rate/
[4] JetBrains. 2023. The State of Developer Ecosystem 2023: Team Tools. In JetBrains Developer Ecosystem Survey. Retrieved May 22, 2025, from https://www.jetbrains.com/lp/devecosystem-2023/team-tools/#ci_tools.

Evolution of CI Pipeline Complexity:
Impact on Build Performance

How do CI/CD tool selection, and pipeline complexity affect build performance metrics?

01. Background & Motivation
As software development increasingly adopts continuous delivery
practices, Continuous Integration and Deployment (CI/CD) have
become fundamental to modern software engineering. [1]
Developers face complex decisions when selecting CI/CD tools and
managing pipeline architectures. [1]
Understanding how CI/CD tool selection impacts performance could
help organizations make better strategic decisions. [1]

04. Results/Findings

06. Future work

05. Conclusion

02. Research Question

Main Research Question: How do CI/CD tool selection, and
pipeline complexity affect and build performance metrics?
Sub-Questions:

How does CI/CD pipeline complexity correlate with build
performance metrics in open-source projects?
How do significant pipeline evolutionary events, such as CI tool
type change, impact performance metrics?
Which CI/CD activities contribute most significantly to pipeline
complexity in open-source projects?

03. Methodology

Data Collection:
196 open-source projects on GitHub with >100 stars, >5 contributors, last 3
months
 Java, Python, JavaScript, and other popular languages (Most used languages in
2024) [2]

Data Points Collected:
CI Pipeline information from configuration files (only from .github/workflows)

GitHub Actions [4]
Pipeline Complxity Metrics:

Number of jobs, Number of steps
Performance Metrics`
Build Duration

Selected as it impacts develop productivity [1]
Build success rate

Selected as it ensures code stability [3]
Time to Fix Failed Build 

Time to Fix Failed Build is the duration between a failed run and the next
successful run in the same context (i.e., same branch, pull request
number, and commit SHA). This metric indicates how quickly developers
respond to pipeline failures. [1]

Analysis Methods:
Correlation analysis between pipeline complexity and performance metrics
Comparison table for migration event comparison

Increased Pipeline Complexity → Clear Increase in
Build Duration
Weak correlation observed with Build Success Rate
& Fix Time.
Tool change→ Unpredictable & Various
Performance Impact
Benefits are project-specific; no single tool
guarantees universal improvement.
Continuous Maintenance (Config File Changes) →
Significant Performance Gains
↓ Build Duration (-52.9%)
↓ Fix Time (-40.1%)
↑ Build Success Rate (+2.1%)
Key Takeaway: Continuous, strategic optimization
is more effective for improving performance than
large-scale tool changes.

Expand Dataset & Scope
Analyze private and industry projects beyond open-
source.
Investigate other CI/CD platforms besides GitHub
Actions.
Use advanced techniques to better understand the
rationale behind pipeline changes.
Incorporate Qualitative Methods
Conduct surveys and interviews with development
teams to gain deeper context on their design
decisions and trade-offs.
Explore the relationship between pipeline
complexity and other software quality attributes
beyond build metrics.

small p-value (typically < 0.05) suggests that the observed correlation is statistically significant and unlikely to have occurred by chance

17 repositories average
⬇Build Time, ⬇ Fix Time
⬆ Build Success Rate (small)

No significant improvement
Project-specific

https://www.jetbrains.com/teamcity/ci-cd-guide/devops-ci-cd-metrics/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://www.software.com/engineering-metrics/build-success-rate
https://www.jetbrains.com/lp/devecosystem-2023/team-tools/#ci_tools

