
Correct-by-construction record typechecking

Kazimierz Ciaś

k.j.cias@student.tudelft.nl

Professor: Jesper Cockx

Supervisor: Sára Juhošová

1. Introduction

Motivation
Typecheckers are important to software development, helping
catch bugs early. They are, however, vulnerable to bugs
themselves, which causes their implementation to diverge from
the theoretical specification.

Correct-by-construction programming
Agda is a programming language which treats types as
mathematical propositions. Its robust typechecker allows us to
create programs with proofs about their functionality by
incrementally refining a small set of rules. This approach is
called correctness-by-construction.

Goal
→ Create a correct-by-construction typechecker with records

 and subtyping and prove its soundness and completeness

→ Compare the result to other approaches

Figure 1: Record type and value

Figure 2: Depth subtyping Figure 3: Width subtyping

2. Implementation
The formal model of the typechecker’s language is adapted from Pierce [1].

The typechecker makes judgements based on typing and subtyping rules. They
dictate whether a term is well-typed and whether one type is a subtype of another.

The typechecker is implemented in two steps: first, the terms, types and rules are
transcribed as datatypes; then, functions for deciding the subtype relation, type
inference and typechecking are constructed based on the rules.

Transcribing the specification
Two typing rules concern records—one allows for their creation and the other lets
us retrieve a value from a field.

data where

 Map

Map Map
¬ ∈ₖ′

⊢::_ Type Term Type Set
⊢rec-empty ⊢ rec [] :: Rec []

⊢rec-more Term Type

⊢ rec :: Rec
⊢ :: ⊢ rec , ∷ :: Rec , ∷

(Γ :) : → →
: Γ

 : ∀ {x} {v} {A} {rs : } {rt : }

→ (x rt) → Γ rs rt

→ Γ v A → Γ ((x v) rs) ((x A) rt)

The rule for function application
needs to be changed to
accommodate subtypes.

 : ∀ {u v} {A B C} → Γ u (A B)

 → Γ v C → C A

 → Γ u v B

⊢· ⊢ :: ⇒
⊢ :: <:
⊢ · ::

Depth and width subtyping can be combined into one subtyping rule for records.

data where
 Rel 0ℓ
 <:rec Map ⊆′
 ∈ₖ′ lookup′

<: Type
Type

All , <:
Rec <: Rec

:
: {m n : } → n m

→ (λ { (k v) → (i : k m) → i v}) n

→ m n

Typechecking and inference
The three typechecking functions all make use of Agda’s structure, which
consists of a boolean value stating whether a proposition holds and a proof
reflecting said value.

Dec

<:?
infer Map Σ[∈]
check Map Σ[∈] ×

: ∀ {S T} → (S T)

 : ∀ (Γ :) u → (t Γ u t)

 : ∀ (Γ :) u (t :) → (s (s t Γ u s))

Dec <:
Dec Type ⊢ ::

Type Dec Type <: ⊢ ::

Returning the relevant typing rule when the functions accept a program guarantees
the typechecker is sound. Conversely, returning a proof that no rule can lead to
rejected input ensures the typechecker’s completeness.

4. Advantages and disadvantages
→ The typechecker is more trustworthy than unverified typechecker

 → Typescript has over 1500 bugs, many related to typechecking

 → Rust has over 80 soundness holes

→ Agda requires additional assurances in seemingly trivial cases

→ Agda’s proof assistance features are sometimes buggy

→ Correct-by-construction programming presents unique challenges

 and is overall more complex than creating unverified programs

 → Creating the typechecker took 41 days, while a version without

 soundness and completeness proofs took only 2 hours

5. Conclusions
Correct-by-construction typecheckers are guaranteed to be consistent
with their specification, making them suitable for critical applications.

On the other hand, due to a combination of less-than-ideal tooling
and intrinsic complexity, the technique takes significantly more time
and effort, making it less suitable for general use.

Full code of the typechecker can be found in the
repository linked in the QR code in Figure 5.

Future Work
→ Investigate how the complexity of a verified

 typechecker increases with its scope

→ Compare the performance of a correct-by-construction typechecker

 to other approaches

→ Improve Agda’s unification and constraint-solving algorithms

→ Create quality-of-life features for Agda developers, such as code

 completion and better documentation

Figure 5:
Repository link

6. References
[1] B. C. Pierce, Types and programming languages, English.
Cambridge, Mass.: MIT Press, 2002. [Online]. Available: http://
www.books24x7.com/marc.asp?isbn=0262162091.

