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Example proof

b b

start —

The proof for this in Agda:

mutual
q0 bisim q0: g0 ™ q0
q0 bisim qO0 .accept = refl
q0 bisim qO .transition a = g1 bisim q1
q0 bisim qO .transition b = g0 bisim q0

gl bisim ql: gl " ql

ql bisim ql .accept = refl

ql bisim ql .transition a = g0 bisim q0
ql bisim ql transition b = ql bisim ql



Example proof

(a) DFA D, (b) DFA D,

record ~ (dl : DFAState) (d2 : DFAState) : Set where

k bisim q .accept = refl

coinductive
field k bisim q .transition a = | bisim_r
accept : dl .isAccepting = d2 .isAccepting k h.|5|m q _trans]tiﬂn h = m hlsim t

transition : ¥ (¢ : Symbol) » ~ (dl .transition ¢} (d2 .transition c)




Bad error message

q reject !

if

Relation . Nullary . Decidable . Core.isYes
(Relation. Nullary . Decidable. Core.map® Data.Char. Properties ./===

Data.Char. Properties .= reflexive

(Relation . Nullary . Decidable. Core.map’
(Data.Nat. Properties.="== 97 (toN c¢))
(Data.Nat. Properties.==" 97 (toN c))
((97 Agda. Builtin . Nat. toV ¢)
Relation. Nullary . Decidable . Core. because
Relation. Nullary . Reflects . T—reflects
(97 Agda. Builtin.Nat. toV ¢))))

then ql else getFromList ¢ (('b” , q0) = |])

of type DFAState
when checking that the expression q reject bisim g reject has type

getFromblist ¢ (g0 .transition) 7 getlFromList ¢ (q0 .transition)



Termination checker cheat

{-## TERMINATING #-}
getReachableStates : NFAState — List NFAState — List NFAState
getReachableStates currentStale visifedStates = if statelnList currentState visitedStates then | |
else
let
new VisitedStates = currentState - wvisitedStates
epsilonStates = getEpsilonStates ( currentState transition)
in
currentState - concatMap (A s — getReachableStates s new VisitedStales) epsilonStates

getUnigueStates - List NFAState — List NFAState
getUniqueStates | | = [ ]
getUniqueStates (z :: zs) = if statelnList z zs then getUniqueStates s else = :: getUniqueStates xs

runNFA : NFAState — List Char — Bool
runNFA currentState | | = currentState .isAccepting
runNFA currentState (e 2 es) =
let
reachable = getUniqueStates (getReachableStates currentState | |)
neztStates = getUniqueStates (concatMap (A 5 — getFromListWithoutEpsilon ¢ (s .transition)) reachable)
finalStates = getUniqueStates (concatMap (A s — getReachableStates s | |) nextStates)
in
any (A s — runNFA s ¢s) finalStates
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