- [] [] [] []
1. Introduction Modelling Finite State Automata in Agda

Finite State Automata (FSA) Agda {/f Noky Soekarman, Supervisor: Bohdan Liesnikov, Responsible Professor: Jesper Cockx
. |nput Alphabet . Functional programming Contact: N.P.Soekarman@StUdent.tudelft.nl
. Set of states language
. For every element in the . Programs are 4. Results

alphapet there exists a const.ructed by * Two fully working DFA encodings, both in Guarded and Musical style.

transition to a next state (DFA). applying and . . .

L . . . * Anotion of equivalence for all the DFA encodings.
. For a nondeterministic version composing functions. - . .
* An NFA encoding which can run input.

there are zero or more . Dependently typed

transitions for each element in . Dependent types are

the alphabet. introduced by having

. L record DFAState : Set where

. See the example with the families of types

Mario, whenever he takes a indexed by objects in data Symbol : Set where coinductive 5. Agda Issues

powerup or bumps into a another type. a : Symbol field * Incompleteness of documentation.

if:t?ba' hemoves to another . TOte.‘l lang;;ggeram e of type T will b : Symbol name : String * This made learning and

: . Lo understanding coinduction in Agda
; always terminate with a isAccepting : Bool . g g
) L take more time.
valueinT. transition : Symbol - DFAState .
. . * Error messages are not clear enough in
Coinduction
)) Agda.

. Coinduction can be used to
represent infinite or cyclic record ~ (d1 : DFAState) (d2 : DFAState) : Set where * As.a reSUltS,.you f?eeclled to spend
structures. coinductive quite some time figuring out what

. To get values from these field was actually wrong.
structures, observers and]]]] * Termination checker only checks for
destructors are used. accept : dl .isAccepting = d2 .isAccepting structural recursion.

. Two coinductive types are transition : Vv (c : Symbol) » _~_ (dl1 .transition c¢) (d2 .transition c) * | needed to cheat the termination
bisimilar if they have the same checker to be able to run input on
behaviour.

record _=_ (dl1 d2 : DFAState) : Set where the NFA.
coinductive
2. Research Question: field 6. Limitations and future work
What are different ways to model Finite State Automata in Agda in a coinductive way equivlanguage : V (s : List Symbol) » accepts s dl = accepts s d2 * Theencodings encode a single state, one
and how to prove equivalence for them? needs to be mindful of this when using the
encodings.
record NFAState : Set where * Some encodings do not force you to create
3. Methods oo g >y
) coinductive a set of states exactly according to the
. Research what FSA are and when they are equivalent. . L
- field official definition.
. Look into past work to see what has been done already. . F K di . Ki f
Implement different encodings of FSA. name : String uture work could investigate making use o
. Try to prove equivalence for the various encodings. isAccepting : Bool sized types for encoding FSA, creating some
. Compare the encodings. o . notion of equivalence for an NFA, or adding
. Suggest possible improvements for Agda to make it easier to use or transition : List ((Maybe Symbol) x NFAState) operations to these encodings such as
implement FSA using coinduction. unifications, concatenation or conversion.

1. Introduction

Finite State Automata (FSA)

. Input Alphabet
. Set of states
. For every elementin the

alphabet there exists a
transition to a next state (DFA).

. For a nondeterministic version
there are zero or more
transitions for each elementin
the alphabet.

. See the example with the
Mario, whenever he takes a
powerup or bumpsinto a
goomba, he moves to another
state.

Agda {“f

Functional programming

language
. Programs are
constructed by
applying and

composing functions.
Dependently typed
. Dependent types are
introduced by having
families of types
indexed by objects in

another type.
Total language
. Program e of type T will
always terminate with a
valueinT.

Coinduction

Coinduction can be used to
represent infinite or cyclic
structures.

To getvalues from these
structures, observers and
destructors are used.

Two coinductive types are
bisimilar if they have the same
behaviour.

Modellin

Noky Soekarma

Contact: N.P.Soekarm

4. Results

Two fully working DFA encodings
A notion of equivalence for all thi
An NFA encoding which can run i

data Symbol : Set where
a : Symbol
b : Symbol
record ~ (dl1 : DFAState) (d2 :
coinductive
field
accept : dl .isAccepting = d2
transition : V (c : Symbol) -
record _=_ (d1 d2 : DFAState) :

L Y N T

- riugldalll © Ul Lypo | VWil
always terminate with a

valueinT.
Coinduction
. Coinduction can be used to
represent infinite or cyclic
structures.
. To get values from these

structures, observers and
destructors are used.

. Two coinductive types are
bisimilar if they have the same
behaviour.

record ~ (dl1 : DFAState) (d2 : DFA
coinductive
field

accept : d1 .isAccepting = d2 .i

transition : V¥ (¢ : Symbol) » _-

2. Research Question:

What are different ways to model Finite State Automata in Agda in a coinductive way

and how to prove equivalence forthem?

record =, (dl1 d2 : DFAState) : S
coinductive
field

equivLanguage : V (s : List Sy

3. Methods

Research what FSA are and when they are equivalent.

. Look into past work to see what has been done already.

. Implement different encodings of FSA.

. Try to prove equivalence for the various encodings.

. Compare the encodings.

. Suggest possible improvements for Agda to make it easier to use or

implement FSA using coinduction.

record NFAState : Set wh
coinductive
field
name : String
isAccepting : Bool

transition List ((

represcnt intinite or Cycuc
structures.

. To getvalues from these
structures, observers and
destructors are used.

. Two coinductive types are
bisimilar if they have the same
behaviour.

==t M e e AV AR M=
coinductive
field
accept : dl .isAccepting = d2

transition : V (c : Symbol) -

2. Research Question:

What are different ways to model Finite State Automata in Agda in a coinductive way
and how to prove equivalence for them?

record _=_ (dl d2 : DFAState) :
coinductive
field

equivlLanguage : V (s : List

3. Methods

Research what FSA are and when they are equivalent.

. Look into past work to see what has been done already.

. Implement different encodings of FSA.

. Try to prove equivalence for the various encodings.

. Compare the encodings.

. Suggest possible improvements for Agda to make it easier to use or

implement FSA using coinduction.

record NFAState : Set
coinductive
field
name : String
isAccepting : Bool

transition : List

. Input Alphabet .

. Set of states language
. For every elementin the .

alphabet there exists a
transition to a next state (DFA).

. For a nondeterministic version
there are zero or more .
transitions for each element in
the alphabet.

. See the example with the
Mario, whenever he takes a
powerup or bumpsinto a
goomba, he moves to another .
state. .

Depende

structure

bisimilar
behaviou

U . .
Functional programming

Programs are
constructed by
applying and
composing functions.
ntly typed

Dependent types are
introduced by having
families of types
indexed by objects in
another type.

Total language

Program e of type T will
always terminate with a
valueinT.

Coinduction

. Coinduction can be used to
represent infinite or cyclic
structures.

. To get values from these

s, observers and

destructors are used.
. Two coinductive types are

if they have the same
r.

Contact: N.P.Soekarman@student.tudelft.nl

4. Results

L]

Two fully working DFA encodings, both in Guarded and Musical style.
A notion of equivalence for all the DFA encodings.
An NFA encoding which can run input.

2. Research Question:

What are different ways to model Finite State Automata in Agda in a coinductive way

and how to prove equivalence for them?

record DFAState : Set where
data Symbol : Set where coinductive
a : Symbol field
b : Symbol name : String
isAccepting : Bool
transition : Symbol - DFAState
record _~_ (dl : DFAState) (d2 : DFAState) : Set where
coinductive
field
accept : dl .isAccepting = d2 .isAccepting
transition : V (c : Symbol) » ~ (dl1 .transition c¢) (d2 .transition c)
record _=_ (dl1 d2 : DFAState) : Set where
coinductive
field
equivLanguage : V (s : List Symbol) - accepts s dl1 = accepts s d2

5. Agda Issues
* |ncompleteness of documentatic

* This made learning and
understanding coinduct
take more time.

* Error messages are not clear enc
Agda.

* As aresults, you needed
quite some time figuring
was actually wrong.

* Termination checker only checks
structural recursion.

* | needed to cheat the ter
checker to be able to rur
the NFA.

3. Methods

Research what FSA are and when they are equivalent.

. Look into past work to see what has been done already.

. Implement different encodings of FSA.

. Try to prove equivalence for the various encodings.

. Compare the encodings.

. Suggest possible improvements for Agda to make it easier to use or

implement FSA using coinduction.

record NFAState : Set where
coinductive
field
name : String
isAccepting : Bool
transition : List ((Maybe Symbol) x NFAState)

6. Limitations and future

* The encodings encode a single st
needs to be mindful of this when
encodings.

* Some encodings do not force yo
a set of states exactly according
official definition.

* Future work could investigate mz
sized types for encoding FSA, cre
notion of equivalence for an NFA
operations to these encodings st
unifications, concatenation or cc

v

ctions.

es are
having
S

ectsin

pe T will
ite with a

dto
ic

tive way

B AVAY Qv 99 | | Is I 111 WALV MuUulviiliialwa 111 r\sua
Noky Soekarman, Supervisor: Bohdan Liesnikov, Responsible Professor: Jesper Cockx

Contact: N.P.Soekarman@student.tudelft.nl

4. Results

Two fully working DFA encodings, both in Guarded and Musical style.
A notion of equivalence for all the DFA encodings.
An NFA encoding which can run input.

record DFAState : Set where
data Symbol : Set where coinductive
a : Symbol field
b : Symbol name : String
isAccepting : Bool
transition : Symbol - DFAState
record _~_ (dl : DFAState) (d2 : DFAState) : Set where
coinductive
field

accept : dl .isAccepting = d2 .isAccepting

transition : V (¢ : Symbol) - ~ (dl1 .transition c) (d2 .transition c)

record _=_ (dl1 d2 : DFAState) : Set where
coinductive
field

equivLanguage : V (s : List Symbol) - accepts s dl1 = accepts s d2

5. Agda Issues
* |ncompleteness of documentation.

* This made learning and
understanding coinduction in Agda
take more time.

* Error messages are not clear enough in
Agda.

* Asaresults, you needed to spend
quite some time figuring out what
was actually wrong.

* Termination checker only checks for
structural recursion.

* | needed to cheat the termination
checkerto be able toruninputon
the NFA.

record NFAState : Set where
coinductive
field
name : String
isAccepting : Bool

transition : List ((Maybe Symbol) x NFAState)

6. Limitations and future work

* Theencodings encode a single state, one
needs to be mindful of this when using the
encodings.

* Some encodings do not force you to create
a set of states exactly according to the
official definition.

* Future work could investigate making use of
sized types for encoding FSA, creating some
notion of equivalence for an NFA, or adding
operations to these encodings such as

rinifFiratinne ~rrnnAcratfanatimnm AF AN/ AFOTA R

field
name : String
isAccepting : Bool
transition : Symbol -» DFAState

record _~_ (d1 : DFAState) (d2 : DFAState) : Set where
coinductive
field
accept : dl .isAccepting = d2 .isAccepting

~_ (d1 .transition c) (d2 .transition c)

transition : V (¢ : Symbol) - _
record _=_ (dl1 d2 : DFAState) : Set where
coinductive
field

equivlLanguage : V (s : List Symbol) - accepts s dl = accepts s d2

record NFAState : Set where
coinductive
field
name : String
isAccepting : Bool

transition : List ((Maybe Symbol) x NFAState)

Incompleteness of documentation.

* This made learning and
understanding coinduction in Agda
take more time.

Error messages are not clear enough in
Agda.

* Asaresults, you needed to spend
quite some time figuring out what
was actually wrong.

Termination checker only checks for
structural recursion.

* | needed to cheat the termination
checkerto be able toruninputon
the NFA.

6. Limitations and future work

* The encodings encode a single state, one
needs to be mindful of this when using the
encodings.

* Some encodings do not force you to create
a set of states exactly according to the
official definition.

* Future work could investigate making use of
sized types for encoding FSA, creating some
notion of equivalence for an NFA, or adding
operations to these encodings such as
unifications, concatenation or conversion.

Example proof

b b

start —

The proof for this in Agda:

mutual
q0 bisim q0: g0 ™ q0
q0 bisim qO0 .accept = refl
q0 bisim qO .transition a = g1 bisim q1
q0 bisim qO .transition b = g0 bisim q0

gl bisim ql: gl " ql

ql bisim ql .accept = refl

ql bisim ql .transition a = g0 bisim q0
ql bisim ql transition b = ql bisim ql

Example proof

(a) DFA D, (b) DFA D,

record ~ (dl : DFAState) (d2 : DFAState) : Set where

k bisim q .accept = refl

coinductive
field k bisim q .transition a = | bisim_r
accept : dl .isAccepting = d2 .isAccepting k h.|5|m q _trans]tiﬂn h = m hlsim t

transition : ¥ (¢ : Symbol) » ~ (dl .transition ¢} (d2 .transition c)

Bad error message

q reject !

if

Relation . Nullary . Decidable . Core.isYes
(Relation. Nullary . Decidable. Core.map® Data.Char. Properties ./===

Data.Char. Properties .= reflexive

(Relation . Nullary . Decidable. Core.map’
(Data.Nat. Properties.="== 97 (toN c¢))
(Data.Nat. Properties.==" 97 (toN c))
((97 Agda. Builtin . Nat. toV ¢)
Relation. Nullary . Decidable . Core. because
Relation. Nullary . Reflects . T—reflects
(97 Agda. Builtin.Nat. toV ¢))))

then ql else getFromList ¢ (('b” , q0) = |])

of type DFAState
when checking that the expression q reject bisim g reject has type

getFromblist ¢ (g0 .transition) 7 getlFromList ¢ (q0 .transition)

Termination checker cheat

{-## TERMINATING #-}
getReachableStates : NFAState — List NFAState — List NFAState
getReachableStates currentStale visifedStates = if statelnList currentState visitedStates then | |
else
let
new VisitedStates = currentState - wvisitedStates
epsilonStates = getEpsilonStates (currentState transition)
in
currentState - concatMap (A s — getReachableStates s new VisitedStales) epsilonStates

getUnigueStates - List NFAState — List NFAState
getUniqueStates | | = []
getUniqueStates (z :: zs) = if statelnList z zs then getUniqueStates s else = :: getUniqueStates xs

runNFA : NFAState — List Char — Bool
runNFA currentState | | = currentState .isAccepting
runNFA currentState (e 2 es) =
let
reachable = getUniqueStates (getReachableStates currentState | |)
neztStates = getUniqueStates (concatMap (A 5 — getFromListWithoutEpsilon ¢ (s .transition)) reachable)
finalStates = getUniqueStates (concatMap (A s — getReachableStates s | |) nextStates)
in
any (A s — runNFA s ¢s) finalStates

	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Example proof
	Slide 15: Example proof
	Slide 16: Bad error message
	Slide 17: Termination checker cheat

