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• Adaptive speed control heavily relies on how a navigator perceives their surroundings. 
Previously relied on ground truth systems like:
• Stereo vision
• LiDAR
• Radar

• Problems: Computationally and energy inefficient. Infeasible for large-scale deployment.
• Solution: ML-powered depth estimation model.

• Use a U-Net or pyramid architecture model to predict depths from images, using 
monocular vision [1, 2].

• Computationally cheaper, better fit for everyday use.
• State-of-the-art models need GPUs and extensive resources to function [3, 4], so 

infeasible for embedded deployment.
• Therefore, use TinyML, a subset of small models that run on cheap microcontrollers.
• This project will focus on the Raspberry Pi Pico, which has only 264 KB of RAM and 2 MB 

of flash memory. Also uses the RP2040 chip, which has a dual core Arm Cortex-M0+ 
processor.

2. Research Question

What is the post-compression efficiency of TinyML depth 
perception models when run on the Raspberry Pi Pico?

Subquestions:
• What other literature is there on TinyML depth 

estimation?
• Is running the monocular depth estimation task on 

the Raspberry Pi Pico feasible?
• What effects do compression techniques such as 

quantization and pruning have on depth perception 
models?

• What are representative metrics for efficiency?

• Three models were selected and compared: L-EfficientUNet [1] , L-Enet [5], μPyD-Net [2]
• One more original model was added to evaluate the efficiency of LSTMs: Temporal-μPyD-

Net
• Models were trained and tested on the Eigen split of the KITTI dataset [6, 7]. This dataset 

contains over 60 recordings from stereo vision cameras and sparse LiDAR depth maps.

• The supervision label was the SGM (Semi Global Matching) disparity map obtained from 
each stereo image pair [8].

• Grayscale images from the left camera were cropped and resized to 32x32 pixels to be used 
as input.

• Models were trained using berHu (reverse Huber) loss and an Adam optimizer for 100 epochs.
• Evaluation was performed using threshold accuracy (pixel is correct if under a certain error 

percentage), inference time, and memory used.
• The top two best-performing models were fully quantized to INT8 and then run for 

inference on the Raspberry Pi Pico.

Figure 1: Raspberry Pi Pico 

Model δ  < 1.25 (<25% error) δ  < 1.252 (<62.5% error) δ  < 1.253 (<95.31% error)

L-EfficientUNet 54.40% 70.08% 80.77%

L-ENet 55.88% 73.24% 83.35%

µPyD-Net 74.32% 83.95% 88.44%

Temporal-µPyD-Net (ours) 74.38% 83.68% 88.40%

Table 1: Accuracies for 64x64 resolution

Figure 3: μPyD-Net vs Temporal- μPyD-
Net on 32x32 resolution 

Figure 4: μPyD-Net vs Temporal- μPyD-
Net SRAM and Inference Time (32x32)

Figure 6: μPyD-Net Prediction

Figure 7: Temporal-μPyD-Net (ours) 
Prediction

• Results show that running the depth perception task is feasible on the Raspberry Pi 
Pico. For practical applications, however, either more work on fine-tuning inference 
time or using a better board is recommended.

• Moreover, by measuring accuracies pre-quantization versus post-quantization, we can 
tell that full INT8 quantization does not affect accuracy in any meaningful way.

• Finally, we can conclude that disparity maps produced by the SGM algorithm are good 
supervision labels [11] and berHu loss facilitates good training results by not getting 
stuck in local minima and being a popular choice when it comes to depth estimation [5].
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Figure 8: μPyD-Net Prediction

Figure 9: Temporal-μPyD-Net (ours) 
Prediction

Figure 10: μPyD-Net Prediction 
(Overlayed)

Figure 11: Temporal-μPyD-Net (ours) 
Prediction (Overlayed)
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Figure 2.1: Raw Image from KITTI


