Automatic Detection of Mind Wandering from Eye Movement

Max van Dijk - Supervisors: Xucong Zhang, Bernd Dudzik, Hayley Hung

1. Background

- Mind wandering (MW) occurs when the executive components of attention appear to shift away from the primary task, not due to external factors [1]
- **Mementos** is a data set containing 1995 annotated individual responses to segments of music videos
- **Fixations** are moments where the gaze is fixed on a single location
- Saccades are the moments between fixations where there is quick eye movement

2. Research Questions

- Can an algorithm that automatically detects mind wandering, based on eye movement from the Mementos data set, perform better than chance?
 - What are indicators for mind wandering in the Mementos data set?
 - What are the differences between the gaze features during mind wandering and outside of mind wandering?

3. Annotating

- Find indicators for mind wandering in the Mementos data set
 - Smiling
 - Looking up / Rolling eyes
 - Squinting / Frowning
 - Sound of person
- Using the indicators, annotate sections of mind wandering in the videos from Mementos
 - 549 samples annotated
 - 52 instances of mind wandering found

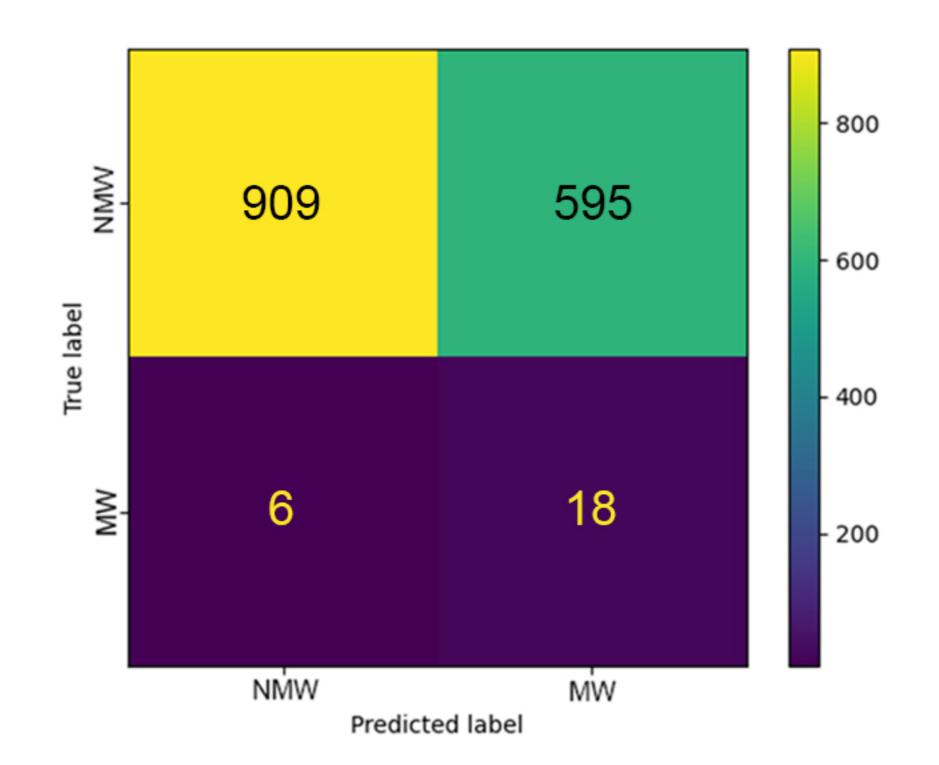


Figure 1: Confusion matrix of best performing classifier

4. Method

- 1. Extract the gaze data using OpenFace
- 2. Estimate fixations and saccades using I-VT algorithm
 - Use gaze angle to calculate gaze velocity per frame in degrees per second
 - Set threshold to detect saccades (≥ 30 °/s)
- 3. Calculate descriptive statistics for fixation and saccades
 - Total, max, min, mean, median
- **4.** Train two binary classification algorithms to detect mind wandering using the calculated features
 - Imbalanced data
 - Synthetic Minority Oversampling Technique (SMOTE)
 - Class-weighted SVM
 - Features scaled before training
- **5.** Calculate performance metrics for the classifiers
 - Grid search on training set to find optimal parameters
 - AUC-ROC, F1-score, recall, precision

Method	AUC-ROC (SD)	F1 (SD)	Recall (SD)	Precision (SD)
SMOTE	$0.63 \ (0.035)$	$0.046 \ (0.0078)$	0.65 (0.10)	$0.024 \ (0.0041)$
Class-Weighted	0.59 (0.048)	$0.041 \ (0.010)$	0.57(0.11)	$0.021 \ (0.0053)$
Chance	$0.51 \ (0.049)$	0.029 (0.0090)	$0.42 \ (0.097)$	$0.015 \ (0.0047)$

Figure 2: Average performance metrics of trained classifiers and a chance-based classifier

5. Results

- Both classifiers perform better than chance (Figure 2)
- AUC-ROC of 0.63 and 0.59
- F1-score 59% and 41% improvement over chance
- SMOTE slightly better performance
- Features do not correspond with previous research
- Mean fixation duration much shorter during MW [2]
- Average fixation duration outside of mind wandering significantly higher than shown in previous studies

6. Conclusion and Future Work

- It is possible to create an algorithm that detects mind wandering from eye movement and performs better than chance in the Mementos data set
- Not a reliable way to detect mind wandering (Figure 1)
- Very low F1-score due to the low precision
- Future research
- Focus on accurate gaze estimation
- Use different gaze features
- Larger group for annotating

