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Dataset name #Rows #Features

Steel plates faults 1941 33

Breast cancer 569 31

Gisette 6000 5000

Internet 

advertisements
3279 1558

Census Income 32560 14

Housing prices 1460 80

Bike sharing 17379 16
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Research question

How do the information-theoretical-based feature selection methods 

MIFS, MRMR, CIFE, and JMI compare in runtime and accuracy / RMSE 

for Machine Learning algorithms?

Methodology Results (2)

Information theory feature selection methods

Mutual Information Feature Selection (MIFS) [1]

The scoring function 𝐽 for a feature 𝑋𝑘, a class variable 𝑌 and a set of 

already selected features 𝑆 is as follows, where 𝐼 𝑋𝑘; 𝑌  denotes the 

information gain between 𝑋𝑘 and 𝑌:

𝐽𝑀𝐼𝐹𝑆 𝑋𝑘 = 𝐼 𝑋𝑘; 𝑌 −  𝛽 ෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗  (1)

Minimum Redundancy Maximum Relevance (MRMR) [3]

𝐽𝑀𝑅𝑀𝑅(𝑋𝑘) = 𝐼 𝑋𝑘; 𝑌 −
1

𝑆
 ෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗  (2)

Conditional Infomax Feature Extraction (CIFE) [2]

𝐽𝐶𝐼𝐹𝐸 𝑋𝑘 = 𝐼 𝑋𝑘; 𝑌 + ෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗| 𝑌 − ෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗

Joint Mutual Information (JMI) [4]

𝐽𝐽𝑀𝐼 𝑋𝑘 = 𝐼 𝑋𝑘; 𝑌 +
1

𝑆
෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗| 𝑌 −
1

𝑆
෍

𝑋𝑗𝜖 𝑆

𝐼 𝑋𝑘; 𝑋𝑗

(3)

(4)
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Conclusions
 

• The simple entropy estimator is up to 30% less accurate, but it is 50 – 

100 times quicker than the complex entropy estimator.

• MIFS and MRMR have 2 – 4 times lower runtime than CIFE and JMI.

• MRMR and JMI lead to models with significantly higher performance.

• IG feature selection can be faster and more effective than the four 

methods in some cases.

Limitations

• The results might be limited to the range of datasets, machine learning 

models used, and their hyperparameters.
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Fig. 1: An example of an augmentation scenario for “Titanic” table

Fig. 3: Runtime comparison of entropy estimators on Breast cancer dataset

Fig. 2: Accuracy comparison of entropy estimators on Steel plates faults and LR

Fig. 4. Comparison of accuracy during MIFS tuning on Logistic Regression
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Fig. 5: Comparison of effectiveness of all datasets for Logistic Regression

• Datasets: Tab. 1;

• Algorithms: 

Logistic Regression 

(LR), XGBoost, and 

SVM;

• Metrics: Evaluation 

based on runtime and 

accuracy / RMSE;

Tab. 1: Datasets used during evaluation
DiscriminationCases

Date_Opened

Date_Closed

Race

Disability

Religion

Age

Sex

Gender_Identity

Marital_Status

Titanic

PassengerId

Survived

Pclass

Name

Age

Sex

SibSp

Parch

Ticket

Fare

Cabin

Embarked

CrimeData

Report_No

Reported_Date

Offense

Offender_Name

City

Sex

Age

Firearm_used

Composite

Key
Composite

Key

GeothermalResources

Id

Latitude

Longitude

Company_Name

Class
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