Combining the Smallest Subset of Programs from
Enumerative Search with Decision Trees

Author: Filip Molnar F.M.T.Molnar@student.tudelft

<2

Supervisor: Reuben Gardos Reid
Responsible Professor: Sebastijan Dumacic

1. INTRODUCTION

Program synthesis
e The ultimate goal of program synthesis is to write an algorithm that can

automatically find programs that satisfy a user intent specified by some
constraints

e applications[2]: FlashFill, code suggestion (Intellisense), data wrangling

o “john.doe@mail.com” — “john doe”

e user intent and exponentially growing program space make this task

challenging

Herb. |l

e many similar concepts are implemented in other projects

e researcher have to write their software from scratch

e Herb.|l provides an adaptable environment to explore program synthesis

1.

while allowing to test and develop new ideas

2. OBJECTIVE

merge the smallest subset of programs with decision trees inspired by
[1,3]

decision tree as layer above any iterator

Sub Questions:

How does a decision tree algorithm improve the basic enumeration
solver when run after partial programs are generated?

What is the algorithm's performance on different enumerated
programs and predicates?

What is the quality of produced solutions?

3. METHODOLOGY

Predicates: programs generated by context free grammar that evaluate
to boolean values
o starting symbol is required for given grammar (starting symbol is C)

. Enumerate and collect programs with breadth-first iterator:

Finding the smallest subset:
e Greedy approximation algorithm for set cover problem
e programs covering the most number of examples are added

. Combining solutions with Decision trees:

o feature vectors — predicates evaluated on |O examples

o labels — every |O example has program that satisfies it

o If (PREDICATE) then PROG 1 else PROG 2

o multi-label DT classification problem - many examples can be solved
by multiple programs

S ::=T | if (C) then T else T
Taa=m O |)] £ | 3| TwF
C T T B8 G 1:0.6

4. EXPERIMENTS AND RESULTS

Improvement analysis - SyGuS dataset

e the number of benchmarks solved and improvement of SubsetDT

e total number of problems SLIA (100), BV (317)

SLLIA ES SubsetDT NS
#Enum 0 100 | 500 | 1000 | 8000 | 24000 -
100 11 +9 +0 +0 +1 +(0
500 17 | +11 +1 +0 +2 +(0
1000 19 | +12 | +1 +() +2 +0 0
10000 24 +9 +1 +0 +3 +0
20000 26 +9 +2 +0 +3 +(
40000 29 +7 +3 +0) +3 +0
100000 30 +7 +3 +0 +3 +0
BV ES SubsetDT NS
#Enum 0 100 | 500 | 1000 | 8000 | 24000 -
100 6 +0 | +11 +0 +24 +22 2
500 10 +0 | +40 +0 +60 +49 2
1000 10 +0 | +50 +(+71 +54 2
10000 15 +0 | +69 +0 +126 +74 4
20000 16 +0 | +71 +0 +123 +76 4
40000 19 +0 | +73 +0 +121 +73 4
100000 19 +0 | +73 +0 +121 +75 4

Final program consisting of 3 subprograms and 2 predicates

e overfitted on examples

e SubsetDT 1000 enums vs Enumerative Solver 500k+ enums

| if contains(arg1, “LDS") |

o~

73

replace(arg1, “L

DS”, “Leads”)

O

.

l If contains(arg1, " ")]

& X

A

50
| | —— Enum. Solver 300 || —<— Enum. Solver
M e SubsetDT 4:1 A —=— SubsetDT 4:1
10 SubsetDT 3:2 - 250) SubsetDT 3:2
L «~— SubsetDT 1:1 SR ~— SubsetDT 1:1
= 200
f) 30 /// e =
8 o5l F T 150
B 4 Fa
= 90K/ g
e Wpr e 100
154 /
10|
h 0 L
100 500 1000 10000 20000 40000 100000 100 50

total enumerations

g _————y‘-’ — — ’*—-_!(

1000 10000 20000 40000 100000

total enumerations

Performance comparison - Enumerative Solver vs SubsetDT on different
ratios of enumerations when generating programs and predicates

size of programs

o
l replace(arg1, "BRD", “Branding”) l replace(arg1,

"‘DRS’, "Direct Response”)

29
SLIA SubsetDT 4:1
SLIA ES
BV ES
15 ,
3
2 3 4 5 6 i 8

problems

Quality of solutions
comparison

SLIA track - solutions
are 1.5x larger
compared to ES
(enumerative solver)

BV track - SubsetDT
programs are 3x larger
than ES

Close program
iInspection showed
overfitting

6. CONCLUSION

e SubsetDT cannot produce new solutions — highly dependent on iterator
e Standalone — can be used on top of any iterator
e SubsetDT provides a substantial improvement when used as a layer on top of the

enumeration solver

e For now, it only works for problems containing a predicate subgrammar

o rule for generating those expressions is required

e Future

o explore other iterators for both program and predicate generation
o create generalized predicate grammar

RELATED LITERATURE

[1] R. Alur, A. Radhakrishna, and A. Udupa, Scaling
Enumerative Program Synthesis via Divide and Conquer

[2] S. Gulwani, O. Polozov, and R. Singh, Program Synthesis

[3] A. Cropper, Learning logic programs through divide,
constrain, and conquer

