
 Combining the Smallest Subset of Programs from
Enumerative Search with Decision Trees

1. INTRODUCTION

Author: Filip Molnár F.M.T.Molnar@student.tudelft

4. EXPERIMENTS AND RESULTS

6. CONCLUSION RELATED LITERATURE

Program synthesis
● The ultimate goal of program synthesis is to write an algorithm that can

automatically find programs that satisfy a user intent specified by some
constraints

● applications[2]: FlashFill, code suggestion (Intellisense), data wrangling
○ “john.doe@mail.com” → “john doe”

● user intent and exponentially growing program space make this task
challenging

Herb.jl
● many similar concepts are implemented in other projects
● researcher have to write their software from scratch
● Herb.jl provides an adaptable environment to explore program synthesis

while allowing to test and develop new ideas

[1] R. Alur, A. Radhakrishna, and A. Udupa, Scaling
Enumerative Program Synthesis via Divide and Conquer

[2] S. Gulwani, O. Polozov, and R. Singh, Program Synthesis

[3] A. Cropper, Learning logic programs through divide,
constrain, and conquer

● SubsetDT cannot produce new solutions → highly dependent on iterator
● Standalone → can be used on top of any iterator
● SubsetDT provides a substantial improvement when used as a layer on top of the

enumeration solver
● For now, it only works for problems containing a predicate subgrammar

○ rule for generating those expressions is required
● Future

○ explore other iterators for both program and predicate generation
○ create generalized predicate grammar

Supervisor: Reuben Gardos Reid
Responsible Professor: Sebastijan Dumačić

3. METHODOLOGY

2. OBJECTIVE
● merge the smallest subset of programs with decision trees inspired by

[1,3]
● decision tree as layer above any iterator

Sub Questions:
● How does a decision tree algorithm improve the basic enumeration

solver when run after partial programs are generated?
● What is the algorithm's performance on different enumerated

programs and predicates?
● What is the quality of produced solutions?

1. Predicates: programs generated by context free grammar that evaluate
to boolean values
○ starting symbol is required for given grammar (starting symbol is C)

1. Enumerate and collect programs with breadth-first iterator:
2. Finding the smallest subset:

● Greedy approximation algorithm for set cover problem
● programs covering the most number of examples are added

3. Combining solutions with Decision trees:
○ feature vectors → predicates evaluated on IO examples
○ labels → every IO example has program that satisfies it
○ if (PREDICATE) then PROG_1 else PROG_2
○ multi-label DT classification problem - many examples can be solved

by multiple programs

Improvement analysis - SyGuS dataset
● the number of benchmarks solved and improvement of SubsetDT
● total number of problems SLIA (100), BV (317)

Final program consisting of 3 subprograms and 2 predicates
● overfitted on examples
● SubsetDT 1000 enums vs Enumerative Solver 500k+ enums

Performance comparison - Enumerative Solver vs SubsetDT on different
ratios of enumerations when generating programs and predicates

Quality of solutions
comparison

SLIA track - solutions
are 1.5x larger
compared to ES
(enumerative solver)

BV track - SubsetDT
programs are 3x larger
than ES

Close program
inspection showed
overfitting

