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I. Introduction
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Figure 1. (a) Feature discovery vs (b) Feature selection.

II. Preliminaries

We propose four correlation measures that can be incorporated into feature selection to compute

the relevancy of any feature Xi with regard to the target Y .

Pearson & Spearman

P (Xi, Y ) =
∑N

j=1(xij − X̄i) · (yj − Ȳ )√∑N
j=1(xij − X̄i)2 ·

√∑N
j=1(yj − Ȳ )2

, (1)

The Spearman correlation S(Xi, Y ) is computed in the same manner as P (Xi, Y ), except that Xi
and Y are rank-transformed to values in [1, N ] [2].

Cramér’s V

C(Xi, Y ) =

√
χ2

N · min(CXi
− 1, CY − 1)

, (2)

where χ2 is the chi-squared test. CXi
and CY denote the number of categories of Xi and Y [3].

Symmetric Uncertainty (SU)

SU(Xi, Y ) = 2 · IG(Xi, Y )
H(Xi) + H(Y )

, (3)

where IG(Xi, Y ) is the information gain. H(Xi) and H(Y ) refer to Shannon’s entropy [4].
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III. Research question & sub-questions

(RQ) How do correlation-based feature selection techniques, in particular Pearson, Spearman,

Cramér’s V, SU, influence the performance of Decision trees, Linear ML algorithms and Support

vector machines?

(SQ1) What is the best correlation technique to be used considering the dimensionality and feature

type(s) of the data?

(SQ2) How much does the choice of ML algorithm influence the performance of correlation-based

feature selection techniques?

IV. Methodology
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Figure 2. ML pipeline for the empirical evaluation. Blue hyperparameters form the baseline configuration.

V. Empirical results
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Figure 3. Effectiveness of the correlation-based feature selection techniques averaged over all ML algorithms.
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Figure 4. Effectiveness of the methods on the original datasets (grey outline) and the encoded datasets (black outline).
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Figure 5. Efficiency of the feature selection stage computed for an increasing % of the samples.
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Figure 6. Efficiency of the In-ML stage of the pipeline computed for an increasing # of features.

VI. Conclusions

1. (SQ1) (i) Effectiveness of methods is highly tied to the type(s) of features. Theoretical

assumptions do not hold in practice and we devise new ones in Table 1.

(ii) Efficiency of feature selection is dependent on the dimensionality of the data.

2. (SQ2) (i) No correlation measure has been identified to exhibit superior effectiveness

exclusively for a particular algorithm.

(ii) Efficiency of the ML system decreases with feature selection, but it is worth the trade-off

to obtain increased effectiveness.

Table 1. Feature types suitable to the correlation measures. Purple represents the types assumed in theory. Red

denotes the types that were found to work in practice.

Numerical Categorical

Discrete Continuous Nominal Ordinal

Pearson X X X X
Spearman X X X X X
Cramér’s V X X X X
Symmetric Uncertainty X X X X X
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