Benchmarking the Robustness of Neuro-Symbolic Learning Against Backdoor Attacks

Author: Andrei Chiru - A.Chiru@student.tudelft.nl; Supervisor: Andrea Agiollo – a.agiollo-1@tudelft.nl; Responsible professor: Kaitai Liang – kaitai.liang@tudelft.nl 🖖

1. Background

Neuro-Symbolic Model

Logic Tensor Networks

- · Uses first-order logic.
- · Writes formulas as differentiable functions on tensors.

Backdoor Attacks

- Adversary injects hidden trigger in
- Model outputs attacker-chosen label when the trigger is present.

Clean-Label Data Poisoning

- · Only modifies data without labels
- · Invisible to human inspection
- Considered PGD [2] based (targeted) implementation and blending based (naïve) implementation

2. Research Question

How Robust is Neural-Symbolic Model Logic Tensor Networks Against Label-C onsistent Data Poisoning Backdoor Attacks?

Metrics

- · Benign accuracy how the model performs on normal data
- · Attach success rate (ASR) how well the model predicts the trigger when poisoned

3. Attack Type

LTN against naïve implementation

LTN against targeted PGD implementation

Key Findings

Poisoning the first image in Naïve harms LTN more, since it's more critical to modulo.

poison second - Benjan

Poisoning both images in PGD disrupts modulo more - both inputs must be

4. Poison Rate **Implications**

LTN against naïve implementation

poison=0.005 - Benjan --- poison=0.005 - ASR poison=0.01 - Benian --- poison=0 01 - ASR

--- poison=0.02 - ASR poison=0.02 - Benian poison=0.05 - Benjan --- poison=0.05 - ASR poison=0.1 - Benign --- poison=0.1 - ASR poison=0.2 - Benjan

LTN against targeted PGD implementation

Run poison rate

	poison=0.005 - Benign	 poison=0.005 - ASR
-	poison=0.01 - Benign	 poison=0.01 - ASR
	poison=0.02 - Benign	 poison=0.02 - ASR
	poison=0.05 - Benign	 poison=0.05 - ASR
_	poison=0.1 - Benign	 poison=0.1 - ASR
	poison=0.2 - Benian	 poison=0.2 - ASR

Key Findings

5. Trigger **Blend Impact**

Key Findings

- · Small blends (0.1-0.3) expose the trigger, lifting ASR but hurting accuracy.
- Near-invisible 0.9 blends restore accuracy yet kill the attack.

6. Poisoning **Labels Effect**

Key Findings

7. Conclusion

- Task-dependent backdoor attacks
- · Raising poisoning rate did not change
- · Naïve implementation is not effective on those two tasks.
- · Targeted PGD impacted the modulo task slightly, but was not effective against addition.
- · Dirty-label backdoor attack has higher attack success rate than clean-label. but it is less stealthy.

8. References